10-6 Volume of Prisms and Cylinders

Warm Up

Lesson Presentation

Lesson Quiz

10-6 Volume of Prisms and Cylinders

Warm Up Find the area of each figure. Round to the nearest tenth.

1. an equilateral triangle with edge length $20 \mathrm{~cm} 173.2 \mathrm{~cm}^{2}$
2. a regular hexagon with edge length 14 m $509.2 \mathrm{~m}^{2}$
3. a circle with radius 6.8 in . $145.3 \mathrm{in}^{2}$
4. a circle with diameter $14 \mathrm{ft} 153.9 \mathrm{ft}^{2}$

10-6 Volume of Prisms and Cylinders

Objectives

Learn and apply the formula for the volume of a prism.

Learn and apply the formula for the volume of a cylinder.

10-6 Volume of Prisms and Cylinders

Vocabulary

volume

10-6 Volume of Prisms and Cylinders

The volume of a three-dimensional figure is the number of nonoverlapping unit cubes of a given size that will exactly fill the interior.
Cavalieri's principle says that if two threedimensional figures have the same height and have the same cross-sectional area at every level, they have the same volume.

A right prism and an oblique prism with the same base and height have the same volume.

10-6 Volume of Prisms and Cylinders

Volume of a Prism

The volume of a prism with base area B and height h is $V=B h$.

The volume of a right rectangular prism with length ℓ, width w, and height h is $V=\ell w h$.

The volume of a cube with edge length s is $V=s^{3}$.

10-6 Volume of Prisms and Cylinders

Example 1A: Finding Volumes of Prisms

Find the volume of the prism. Round to the nearest tenth, if necessary.

$\mathrm{V}=\ell \mathrm{wh} \quad$ Volume of a right rectangular prism
$=(13)(3)(5)$ Substitute 13 for $\ell, 3$ for w, and 5 for h.
$=195 \mathrm{~cm}^{3}$

10-6 Volume of Prisms and Cylinders

Example 1B: Finding Volumes of Prisms

Find the volume of a cube with edge length 15 in. Round to the nearest tenth, if necessary.

$$
\begin{array}{rlrl}
V & =s^{3} & & \text { Volume of a cube } \\
& =(15)^{3} & & \text { Substitute 15 for s. } \\
& =3375 \mathrm{in}^{3} &
\end{array}
$$

10-6 Volume of Prisms and Cylinders

Example 1C: Finding Volumes of Prisms

Find the volume of the right regular hexagonal prism. Round to the nearest tenth, if necessary.

Step 1 Find the apothem a of the base. First draw a right triangle on one base. The measure of the angle with its vertex at the center is $\frac{360^{\circ}}{12}=30^{\circ}$.

10-6 Volume of Prisms and Cylinders

Example 1C Continued

Find the volume of the right regular hexagonal prism. Round to the nearest tenth, if necessary.
So the sides are in ratio $1: \sqrt{3}: 2$.

$$
\begin{aligned}
\frac{a}{4.5}=\frac{\sqrt{3}}{1} & \begin{array}{l}
\text { The leg of the triangle is half the } \\
\text { side length, or } 4.5 \mathrm{ft} .
\end{array} \\
a=4.5 \sqrt{3} & \text { Solve for } a .
\end{aligned}
$$

Step 2 Use the value of a to find the base area.
$B=\frac{1}{2} a P=\frac{1}{2}(4.5 \sqrt{3})(54)=121.5 \sqrt{3} \quad P=6(9)=54 \mathrm{ft}$

10-6 Volume of Prisms and Cylinders

Example 1C Continued

Find the volume of the right regular hexagonal prism. Round to the nearest tenth, if necessary.

Step 3 Use the base area to find the volume.
$V=B h=(121.5 \sqrt{3}) \cdot 12 \approx 2525.3 \mathrm{ft}^{2}$

10-6 Volume of Prisms and Cylinders

Check It Out! Example 1

Find the volume of a triangular prism with a height of 9 yd whose base is a right triangle with legs 7 yd and 5 yd long.

$$
\begin{aligned}
V & =\frac{1}{2} \ell w h \quad \text { Volume of a triangular prism } \\
& =\frac{1}{2}(5)(7)(9)=157.5 \mathrm{yd}^{3}
\end{aligned}
$$

10-6 Volume of Prisms and Cylinders

Example 2: Recreation Application

A swimming pool is a rectangular prism. Estimate the volume of water in the pool in gallons when it is completely full (Hint: 1 gallon $\approx 0.134 \mathrm{ft}^{\mathbf{3}}$). The density of water is about 8.33 pounds per gallon. Estimate the weight of the water in pounds.

10-6 Volume of Prisms and Cylinders

Example 2 Continued

Step 1 Find the volume of the swimming pool in cubic feet.

$$
V=\ell w h=(25)(15)(19)=3375 \mathrm{ft}^{3}
$$

Step 2 Use the conversion factor $\frac{1 \text { gallon }}{0.134 \mathrm{ft}^{3}}$ to estimate the volume in gallons.
$0.134 \mathrm{ft}^{3}$
$3375 \mathrm{ft}^{3} \cdot \frac{1 \mathrm{gallon}}{0.134 \mathrm{ft}^{3}} \approx 25,186.57$ gallons $\frac{1 \text { gallon }}{0.134 \mathrm{ft}^{3}}=1$

10-6 Volume of Prisms and Cylinders

Example 2 Continued

Step 3 Use the conversion factor $\frac{8.33 \text { pounds }}{1 \text { gallon }}$ to
estimate the weight of the water estimate the weight of the water.

$$
25,186.57 \cdot \frac{8.33 \text { pounds }}{1 \text { gallon }} \quad \frac{8.33 \text { pounds }}{1 \text { gallon }}=1
$$

$\approx 209,804$ pounds
The swimming pool holds about 25,187 gallons. The water in the swimming pool weighs about 209,804 pounds.

10-6 Volume of Prisms and Cylinders

Check It Out! Example 2

What if...? Estimate the volume in gallons and the weight of the water in the aquarium if the height were doubled.

Step 1 Find the volume of the aquarium in cubic feet.

$V=\ell w h=(120)(60)(16)=115,200 \mathrm{ft}^{3}$

10-6 Volume of Prisms and Cylinders

Check It Out! Example 2 Continued

What if...? Estimate the volume in gallons and the weight of the water in the aquarium if the height were doubled.

Step 2 Use the conversion factor $\frac{1 \text { gallon }}{0.134 \mathrm{ft}^{3}}$ to estimate the volume in gallons.

$115,200 \mathrm{ft}^{3} \cdot \frac{1 \text { gallon }}{0.134 \mathrm{ft}^{3}} \approx 859,701.49$ gallons $\frac{1 \text { gallon }}{0.134 \mathrm{ft}^{3}}=1$

10-6 Volume of Prisms and Cylinders

Check It Out! Example 2 Continued

What if...? Estimate the volume in gallons and the weight of the water in the aquarium if the height were doubled.

Step 3 Use the conversion
factor $\frac{8.33 \text { pounds }}{1 \text { gallon }}$ to estimate the weignt or une water.

$$
\frac{8.33 \text { pounds }}{1 \text { gallon }}=1
$$

$859,701.49 \cdot \frac{8.33 \text { pounds }}{1 \text { gallon }} \approx 7,161,313.41$ pounds

10-6 Volume of Prisms and Cylinders

Check It Out! Example 2 Continued

What if...? Estimate the volume in gallons and the weight of the water in the aquarium if the height were doubled.

The swimming pool holds about 859,701 gallons. The water in the swimming pool weighs about 7,161,313
 pounds.

10-6 Volume of Prisms and Cylinders

Cavalieri's principle also relates to cylinders. The two stacks have the same number of CDs, so they have the same volume.

Volume of a Cylinder

The volume of a cylinder with base area B, radius r, and height h is $V=B h$, or $V=\pi r^{2} h$.

10-6 Volume of Prisms and Cylinders

Example 3A: Finding Volumes of Cylinders

Find the volume of the cylinder. Give your answers in terms of π and rounded to the nearest tenth.

$$
\begin{aligned}
V & =\pi r^{2} h \quad \text { Volume of a cylinder } \\
& =\pi(9)^{2}(14) \text { Substitute } \frac{18}{2}=9 \text { for } r \text { and } 14 \text { for } h . \\
& =1134 \pi \mathrm{in}^{3} \approx 3562.6 \mathrm{in}^{3}
\end{aligned}
$$

10-6 Volume of Prisms and Cylinders

Example 3B: Finding Volumes of Cylinders

Find the volume of a cylinder with base area $121 \pi \mathrm{~cm}^{2}$ and a height equal to twice the radius. Give your answer in terms of π and rounded to the nearest tenth.

Step 1 Use the base area to find the radius.

$$
\begin{aligned}
\pi r^{2} & =121 \pi & & \text { Substitute } 121 \pi \text { for the base area. } \\
r & =11 & & \text { Solve for } r .
\end{aligned}
$$

Step 2 Use the radius to find the height. The height is equal to twice the radius.

$$
\begin{aligned}
h & =2(r) \\
& =2(11)=22 \mathrm{~cm}
\end{aligned}
$$

10-6 Volume of Prisms and Cylinders

Example 3B Continued

Find the volume of a cylinder with base area π and a height equal to twice the radius. Give your answers in terms of π and rounded to the nearest tenth.

Step 3 Use the radius and height to find the volume.
$V=\pi r^{2} h \quad$ Volume of a cylinder
$=\pi(11)^{2}(22)$ Substitute $\frac{18}{2}=9$ for r and 22 for h.
$=2662 \pi \mathrm{~cm}^{3} \approx 8362.9 \mathrm{~cm}^{3}$

10-6 Volume of Prisms and Cylinders

Check It Out! Example 3

Find the volume of a cylinder with a diameter of 16 in. and a height of 17 in. Give your answer both in terms of n and rounded to the nearest tenth.

$$
\begin{aligned}
V & =\pi r^{2} h \quad \text { Volume of a cylinder } \\
& =\pi(8)^{2}(17) \quad \text { Substitute } 8 \text { for } r \text { and } 17 \text { for } h . \\
& =1088 \pi \mathrm{in}^{3} \approx 3418.1 \mathrm{in}^{3}
\end{aligned}
$$

10-6 Volume of Prisms and Cylinders

Example 4: Exploring Effects of Changing Dimensions

The radius and height of the cylinder are multiplied by $\frac{2}{3}$. Describe the effect on the volume.

original dimensions:
radius and height multiplied by $\frac{2}{3}$:

$$
\begin{aligned}
V & =\pi r^{2} h \\
& =\pi(24)^{2}(33)=19,008 \pi \text { in }^{3}
\end{aligned}
$$

$V=\pi r^{2} h$

$$
=\pi(16)^{2}(22)=5632 \pi \mathrm{in}^{3}
$$

10-6 Volume of Prisms and Cylinders

Example 4 Continued

The radius and height of the cylinder are multiplied by $\frac{2}{3}$. Describe the effect on the ${ }^{3}$ volume.

Notice that $5632 \pi=\frac{8}{27} 19,008 \pi$. If the radius and height are multiplied by $\frac{2}{3}$, the volume is multiplied by $\left(\frac{2}{3}\right)^{3}$, or $\frac{8}{27}$.

10-6 Volume of Prisms and Cylinders

Check It Out! Example 4

The length, width, and height of the prism are doubled. Describe the effect on the volume.
original dimensions:

$$
\begin{aligned}
V & =\ell w h \\
& =(1.5)(4)(3) \\
& =18
\end{aligned}
$$

1.5 ft

dimensions multiplied by 2 :

$$
\begin{aligned}
V & =\ell w h \\
& =(3)(8)(6) \\
& =144
\end{aligned}
$$

Doubling the dimensions increases the volume by 8 times.

10-6 Volume of Prisms and Cylinders

Example 5: Finding Volumes of Composite ThreeDimensional Figures

Find the volume of the composite figure. Round to the nearest tenth.
The volume of the rectangular prism is:

$$
V=\ell w h=(8)(4)(5)=160 \mathrm{~cm}^{3}
$$

The volume of the regular regular triangular prism is: triangular prism is:
$B=\frac{1}{2}(8)(4 \sqrt{3})=16 \sqrt{3} \mathrm{~cm}^{2} \quad V=B h=(16 \sqrt{3}) 4=64 \sqrt{3} \mathrm{~cm}^{3}$
The total volume of the fiqure is the sum of the volumes.

$$
V=160+64 \sqrt{3} \approx 270.9 \mathrm{~cm}^{3}
$$

10-6 Volume of Prisms and Cylinders

Check It Out! Example 5

Find the volume of the composite figure. Round to the nearest tenth.

Find the side length s of the base: $s=3 \sqrt{2}$

The volume of the square prism is:
$V=s^{2} h=(3 \sqrt{2})^{2}(5)=90$

The volume of
the cylinder is:

$$
V=\pi r^{2} h=\pi(3)^{2}(5)=45 \pi
$$

The volume of the composite is the cylinder minus the rectangular prism.

$$
V_{\text {cylinder }}-V_{\text {square prism }}=45 \pi-90 \approx 51.4 \mathrm{~cm}^{3}
$$

10-6 Volume of Prisms and Cylinders

Lesson Quiz: Part I

Find the volume of each figure. Round to the nearest tenth, if necessary.

1. a right rectangular prism with length 14 cm , width 11 cm , and height $18 \mathrm{~cm} V=2772 \mathrm{~cm}^{3}$
2. a cube with edge length $22 \mathrm{ft} \quad V=10,648 \mathrm{ft}^{3}$
3. a regular hexagonal prism with edge length 10 ft and height $10 \mathrm{ft} V \approx 2598.1 \mathrm{ft}^{3}$
4. a cylinder with diameter 16 in. and height 7 in. $V \approx 1407.4 \mathrm{in}^{3}$

10-6 Volume of Prisms and Cylinders

Lesson Quiz: Part II

5. a cylinder with base area $196 \pi \mathrm{~cm}^{2}$ and a height equal to the diameter $V \approx 17,241.1 \mathrm{~cm}^{3}$
6. The edge length of the cube is tripled. Describe the effect on the volume. The volume is multiplied by 27.

7. Find the volume of the composite figure. Round to the nearest tenth. $9160.9 \mathrm{in}^{3}$

