Warm Up

Lesson Presentation

Lesson Quiz

10-1 Solid Geometry

Warm Up
 Classify each polygon.

1. a polygon with three congruent sides equilateral triangle
2. a polygon with six congruent sides and six congruent angles regular hexagon
3. a polygon with four sides and with opposite sides parallel and congruent parallelogram

10-1 Solid Geometry

Objectives

Classify three-dimensional figures according to their properties.

Use nets and cross sections to analyze three-dimensional figures.

10-1 Solid Geometry

Vocabulary

faceedgevertex
prism
cylinder
pyramid
cone
cubenet
cross section

10-1 Solid Geometry

Three-dimensional figures, or solids, can be made up of flat or curved surfaces. Each flat surface is called a face. An edge is the segment that is the intersection of two faces. A vertex is the point that is the intersection of three or more faces.

10-1) Solid Geometry

Three-Dimensional Figures

TERM

EXAMPLE

A prism is formed by two parallel congruent polygonal faces called bases connected by faces that are parallelograms.

A cylinder is formed by two parallel congruent circular bases and a curved surface that connects the bases.

A pyramid is formed by a polygonal base and triangular faces that meet at a common vertex.

A cone is formed by a circular base and a curved surface that connects the base to a vertex.

10-1 Solid Geometry

A cube is a prism with six square faces. Other prisms and pyramids are named for the shape of their bases.

Triangular prism

Triangular pyramid

Rectangular prism

Rectangular pyramid

Pentagonal prism

Pentagonal pyramid

Hexagonal prism

Hexagonal pyramid

10-1 Solid Geometry

Example 1A: Classifying Three-Dimensional Figures

Classify the figure. Name the vertices, edges, and bases.

cube
vertices: A, B, C, D, E, F, G, H edges: $\overline{A B}, \overline{B C}, \overline{C D}, \overline{D A}, \overline{E F}, \overline{F G}$, $\overline{G H}, \overline{H E}, \overline{A E}, \overline{B F}, \overline{C G}, \overline{D H}$
bases: $A B C D, E F G H, A B F E$, DCGH, ADHE, BCGF

10-1 Solid Geometry

Example 1B: Classifying Three-Dimensional Figures

Classify the figure. Name the vertices, edges, and bases.

pentagonal pyramid
vertices: A, B, C, D, E, F
edges: $\overline{A B}, \overline{B C}, \overline{C D}, \overline{D E}, \overline{E A}$, $\overline{A F}, \overline{B F}, \overline{C F}, \overline{D F}, \overline{E F}$
base: $A B C D E$

10-1 Solid Geometry

Check It Out! Example 1a

Classify the figure. Name the vertices, edges, and bases.

cone
vertex: N
edges: none
base: •M

10-1 Solid Geometry

Check It Out! Example 1b

Classify the figure. Name the vertices, edges, and bases.

triangular prism
vertices: T, U, V, W, X, Y
edges: $\overline{T U}, \overline{T V}, \overline{U V}, \overline{T W}, \overline{U X}$, $\overline{V Y}, \overline{W X}, \overline{W Y}, \overline{X Y}$

bases: $\triangle T U V, \triangle W X Y$

A net is a diagram of the surfaces of a threedimensional figure that can be folded to form the three-dimensional figure. To identify a threedimensional figure from a net, look at the number of faces and the shape of each face.

10-1 Solid Geometry

Example 2A: Identifying a Three-Dimensional Figure From a Net

Describe the three-dimensional figure that can be made from the given net.

The net has six congruent square faces. So the net forms a cube.

10-1 Solid Geometry

Example 2B: Identifying a Three-Dimensional Figure From a Net

Describe the three-dimensional figure that can be made from the given net.

The net has one circular face and one semicircular face. These are the base and sloping face of a cone. So the net forms a cone.

10-1 Solid Geometry

Check It Out! Example 2a

Describe the three-dimensional figure that can be made from the given net.

The net has four congruent triangular faces. So the net forms a triangular pyramid.

10-1 Solid Geometry

Check It Out! Example 2b

Describe the three-dimensional figure that can be made from the given net.

The net has two circular faces and one rectangular face. These are the bases and curved surface of a cylinder. So the net forms a cylinder.

10-1 Solid Geometry

A cross section is the intersection of a threedimensional figure and a plane.

10-1 Solid Geometry

Example 3A: Describing Cross Sections of ThreeDimensional Figures

Describe the cross section.

The cross section is a point.

10-1) Solid Geometry

Example 3B: Describing Cross Sections of ThreeDimensional Figures

Describe the cross section.

The cross section is a pentagon.

10-1 Solid Geometry

Check It Out! Example 3a

Describe the cross section.

The cross section is a hexagon.

10-1 Solid Geometry

Check It Out! Example 3b

Describe the cross section.

The cross section is a triangle.

10-1 Solid Geometry

Example 4A: Food Application

A piece of cheese is a prism with equilateral triangular bases. How can you slice the cheese to make each shape?
an equilateral triangle

Cut parallel to the bases.

10-1 Solid Geometry

Example 4B: Food Application

A piece of cheese is a prism with equilateral triangular bases. How can you slice the cheese to make each shape?
a rectangle

Cut perpendicular to the bases.

10-1 Solid Geometry

Check It Out! Example 4

How can a chef cut a cube-shaped watermelon to make slices with triangular faces?

Cut through the midpoints of 3 edges that meet at 1 vertex.

10-1 Solid Geometry

Lesson Quiz: Part I

1. Classify the figure. Name the vertices, edges, and bases.

triangular prism;
vertices: A, B, C, D, E, F;
edges: $\overline{A D}, \overline{C F}, \overline{B E}, \overline{F D}, \overline{E F}$,
$\overline{A C}, \overline{D E}, \overline{A B}, \overline{B C}$
bases: $\triangle A B C$ and $\triangle D E F$

10-1 Solid Geometry

Lesson Quiz: Part II

2. Describe the three-dimensional figure that can be made from this net.

> square pyramid

10-1 Solid Geometry

Lesson Quiz: Part III

3. Describe the cross section.

a rectangle
