### **Objective**

# Solve problems involving angles of elevation and angles of depression.

**Holt Geometry** 

**angle of elevation** is the angle formed by a horizontal line and a line of sight to a point *above* the line.

**angle of depression** is the angle formed by a horizontal line and a line of sight to a point *below* the line.



**Holt Geometry** 

Since horizontal lines are parallel,  $\angle 1 \cong \angle 2$  by the Alternate Interior Angles Theorem. Therefore the angle of elevation from one point is congruent to the angle of depression from the other point.



**Holt Geometry** 

### Example 1A: Classifying Angles of Elevation and Depression

Classify each angle as an angle of elevation or an angle of depression.





#### **Check It Out! Example 1**

### Use the diagram above to classify each angle as an angle of elevation or angle of depression.



### **1a.** ∠5

 $\angle 5$  is formed by a horizontal line and a line of sight to a point below the line. It is an angle of depression.

### **1b.** ∠6

 $\angle 6$  is formed by a horizontal line and a line of sight to a point above the line. It is an angle of elevation.

#### Example 2: Finding Distance by Using Angle of Elevation

The Seattle Space Needle casts a 67meter shadow. If the angle of elevation from the tip of the shadow to the top of the Space Needle is 70°, how tall is the Space Needle? Round to the nearest meter.

Draw a sketch to represent the given information. Let *A* represent the tip of the shadow, and let *B* represent the top of the Space Needle. Let *y* be the height of the Space Needle.

#### **Example 2 Continued**



**Holt Geometry** 

#### Check It Out! Example 2

What if...? Suppose a plane is at an altitude of 3500 ft and the angle of elevation from the airport to the plane is 29°. What is the horizontal distance between the plane and the airport? Round to the nearest foot.

$$\tan 29^\circ = \frac{3500}{x}$$

You are given the side opposite  $\angle A$ , and x is the side adjacent to  $\angle A$ . So write a tangent ratio.

 $x = \frac{3500}{\tan 29^{\circ}}$ Multiply both sides by x and<br/>divide by tan 29°. $x \approx 6314$  ftSimplify the expression.

3500 ft

#### **Check It Out! Example 3**

What if...? Suppose a ranger in a 90 ft tower sees a fire and the angle of depression to the fire is 3°. What is the horizontal distance to this fire? Round to the nearest foot.

By the Alternate Interior Angles Theorem,  $m \angle F = 3^{\circ}$ .

 $\tan 3^{\circ} = \frac{90}{x}$  $x = \frac{90}{\tan 3^{\circ}}$  $x \approx 1717 \text{ ft}$ Holt Geometry

Write a tangent ratio.

Multiply both sides by x and divide by tan 3°.

.717 ft Simplify the expression.



#### Check It Out! Example 4

A pilot flying at an altitude of 12,000 ft sights an airport directly in front of him. The angle of depression to the airport is 78°. What is the distance to the airport? Round to the nearest foot.

#### **Check It Out! Example 4 Continued**

**Step 1** Draw a sketch. Let *P* represent the pilot and let *A* and *B* represent the two airports. Let *x* be the distance between the two airports.



#### **Check It Out! Example 4 Continued**

### Step 2 Find y.

By the Alternate Interior Angles Theorem,  $m\angle CAP = 78^{\circ}$ . In  $\triangle APC$ ,  $\tan 78^{\circ} = \frac{12,000}{y}$ . So  $y = \frac{12,000}{\tan 78^{\circ}} \approx 2551$  ft.



#### **Lesson Quiz: Part I**

Classify each angle as an angle of elevation or angle of depression.



- **1.**  $\angle 6$  angle of depression
- **2.**  $\angle$ 9 angle of elevation

### Lesson Quiz: Part II

**3.** A plane is flying at an altitude of 14,500 ft. The angle of depression from the plane to a control tower is 15°. What is the horizontal distance from the plane to the tower? Round to the nearest foot.

54,115 ft

**Holt Geometry** 



### Pg. 547 # 3-8, 10-13, 15, 24

**Holt Geometry**