8-4 Angles of Elevation and Depression

Objective

Solve problems involving angles of elevation and angles of depression.

8-4 Angles of Elevation and Depression

angle of elevation is the angle formed by a horizontal line and a line of sight to a point above the line.
angle of depression is the angle formed by a horizontal line and a line of sight to a point below the line.

8-4 Angles of Elevation and Depression

Since horizontal lines are parallel, $\angle 1 \cong \angle 2$ by the Alternate Interior Angles Theorem. Therefore the angle of elevation from one point is congruent to the angle of depression from the other point.

8-4 Angles of Elevation and Depression

Example 1A: Classifying Angles of Elevation and
Depression

Classify each angle as an angle of elevation or an angle of depression.

$\angle 1$ $\angle 4$ $\angle 3$
$\angle 2$

8-4 Angles of Elevation and Depression

Check It Out! Example 1

Use the diagram above to classify each angle as an angle of elevation or angle of depression.

```
1a. \(\angle 5\)
```


$\angle 5$ is formed by a horizontal line and a line of sight to a point below the line. It is an angle of depression.
1b. $\angle 6$
$\angle 6$ is formed by a horizontal line and a line of sight to a point above the line. It is an angle of elevation.

8-4 Angles of Elevation and Depression

Example 2: Finding Distance by Using Angle of Elevation

The Seattle Space Needle casts a 67meter shadow. If the angle of elevation from the tip of the shadow to the top of the Space Needle is 70°, how tall is the Space Needle? Round to the nearest meter.

Draw a sketch to represent the given information. Let A represent the tip of the shadow, and let B represent the top of the Space Needle. Let y be the height of the Space Needle.

8-4 Angles of Elevation and Depression

Example 2 Continued

$\tan 70^{\circ}=\frac{y}{67} \quad$ You are given the side adjacent to $\angle A$, and y is the side opposite $\angle A$. So write a tangent ratio.
$y=67 \tan 70^{\circ}$ Multiply both sides by 67.
$y \approx 184 \mathrm{~m} \quad$ Simplify the expression.

8-4 Angles of Elevation and Depression

Check It Out! Example 2

What if...? Suppose a plane is at an altitude of 3500 ft and the angle of elevation from the airport to the plane is 29°. What is the horizontal distance between the plane and the airport? Round to the nearest foot.

$$
\tan 29^{\circ}=\frac{3500}{x}
$$

You are given the side opposite $\angle A$, and x is the side adjacent to $\angle A$. So write a tangent ratio.

$$
\begin{array}{ll}
x=\frac{3500}{\tan 29^{\circ}} & \begin{array}{l}
\text { Multiply both sides by } x \text { and } \\
\text { divide by } \tan 29^{\circ} .
\end{array} \\
x \approx 6314 \mathrm{ft} & \text { Simplify the expression. }
\end{array}
$$

8-4 Angles of Elevation and Depression

Check It Out! Example 3

What if...? Suppose a ranger in a 90 ft tower sees a fire and the angle of depression to the fire is 3°. What is the horizontal distance to this fire? Round to the nearest foot.

By the Alternate Interior Angles Theorem, $\mathrm{m} \angle F=3^{\circ}$. $\tan 3^{\circ}=\frac{90}{x}$

Write a tangent ratio.

$$
x=\frac{90}{\tan 3^{\circ}} \quad \begin{aligned}
& \text { Multiply both sides by } x \text { and } \\
& \text { divide by } \tan 3^{\circ} .
\end{aligned}
$$

$x \approx 1717 \mathrm{ft}$ Simplify the expression.

8-4 Angles of Elevation and Depression

Check It Out! Example 4

A pilot flying at an altitude of $12,000 \mathrm{ft}$ sights an airport directly in front of him. The angle of depression to the airport is 78°. What is the distance to the airport? Round to the nearest foot.

8-4 Angles of Elevation and Depression

Check It Out! Example 4 Continued

Step 1 Draw a sketch. Let P represent the pilot and let A and B represent the two airports. Let x be the distance between the two airports.

8-4 Angles of Elevation and Depression

Check It Out! Example 4 Continued

Step 2 Find y.
By the Alternate Interior Angles Theorem, $\mathrm{m} \angle C A P=78^{\circ}$.
In $\triangle A P C, \tan 78^{\circ}=\frac{12,000}{y}$.
So $y=\frac{12,000}{\tan 78^{\circ}} \approx 2551 \mathrm{ft}$.

8-4 Angles of Elevation and Depression

Lesson Quiz: Part I

Classify each angle as an angle of elevation or angle of depression.

1. $\angle 6$ angle of depression
2. $\angle 9$ angle of elevation

8-4 Angles of Elevation and Depression

Lesson Quiz: Part II

3. A plane is flying at an altitude of $14,500 \mathrm{ft}$. The angle of depression from the plane to a control tower is 15°. What is the horizontal distance from the plane to the tower? Round to the nearest foot.

$$
54,115 \mathrm{ft}
$$

8-4 Angles of Elevation and Depression

Pg. 547 \# 3-8, 10-13, 15, 24

