8-3 Solving Right Triangles

1. If $a=60$ and $c=61$, find b. 11
2. If $b=6$ and $c=10$, find $\sin B . \quad 0.6$

8-3 Solving Right Triangles

Find each length. Round to the nearest tenth.
3. $C B 6.1$

4. $A C 16.2$

8-3 Solving Right Triangles

8.3 - Find missing angles using Trig
 -- Solve Right Triangles

8-3 Solving Right Triangles

In Lesson 8-2, you learned that $\sin 30^{\circ}=0.5$. Conversely, if you know that the sine of an acute angle is 0.5 , you can conclude that the angle measures 30°. This is written as $\sin ^{-1}(0.5)=30^{\circ}$.

8-3 Solving Right Triangles

Inverse Trigonometric Functions

If $\sin A=x$, then $\sin ^{-1} x=m \angle A$.
If $\cos A=x$, then $\cos ^{-1} x=m \angle A$.
If $\tan A=x$, then $\tan ^{-1} x=m \angle A$.
***To find unknown angles in a Right Triangle, we use inverse trig functions
****To know which trig function to use, look at what sides are given to us.

8-3 Solving Right Triangles

Find the measure of the missing angle.

8-3 Solving Right Triangles

Find the measure of the missing angle.

8-3 Solving Right Triangles

Find the measure of the missing angle.

8-3 Solving Right Triangles

Example 3: Solving Right Triangles

Find the unknown measures. Round lengths to the nearest hundredth and angle measures to the nearest degree.

$$
R T^{2}=R S^{2}+S T^{2}
$$

$(5.7)^{2}=5^{2}+S T^{2}$
So $S T=\sqrt{7.49} \approx 2.74$.

$$
\mathrm{m} \angle R=\cos ^{-1}\left(\frac{5}{5.7}\right) \approx 29^{\circ}
$$

Since the acute angles of a right triangle are complementary, $\mathrm{m} \angle T \approx 90^{\circ}-29^{\circ} \approx 61^{\circ}$.

8-3 Solving Right Triangles

Check It Out! Example 3

Find the unknown measures. Round lengths to the nearest hundredth and angle measures to the nearest degree.

Since the acute angles of a right triangle are complementary, $\mathrm{m} \angle D=90^{\circ}-58^{\circ}=32^{\circ}$.
$\tan 32^{\circ}=\frac{E F}{14}$, so $E F=14 \tan 32^{\circ} . E F \approx 8.75$
$D F^{2}=E D^{2}+E F^{2}$
$D F^{2}=14^{2}+8.75^{2}$
$D F \approx 16.51$

8-3 Solving Right Triangles

Problem Solving Application

A contractor is building a wheelchair ramp for a doorway that is 1.2 ft above the ground. To meet ADA guidelines, the ramp will make an angle of 4.8° with the ground. To the nearest hundredth of a foot, what is the horizontal distance covered by the ramp?

8-3 Solving Right Triangles

Example 4: Solving a Right Triangle in the Coordinate Plane

The coordinates of the vertices of $\triangle P Q R$ are $P(-3,3), Q(2,3)$, and $R(-3,-4)$. Find the side lengths to the nearest hundredth and the angle measures to the nearest degree.

8-3 Solving Right Triangles

Example 4 Continued

Step 1 Find the side lengths. Plot points P, Q, and R.

$$
P R=7 \quad P Q=5
$$

By the Distance Formula,

$$
\begin{aligned}
Q R & =\sqrt{(-3-2)^{2}+(-4-3)^{2}} \\
& =\sqrt{(-5)^{2}+(-7)^{2}} \\
& =\sqrt{25+49}=\sqrt{74} \approx 8.60
\end{aligned}
$$

8-3 Solving Right Triangles

Example 4 Continued

Step 2 Find the angle measures.

$$
\begin{gathered}
\mathrm{m} \angle P=90^{\circ} \overline{P Q} \text { and } \overline{P R} \text { are } \perp . \\
\overline{P R} \text { is opp. } \angle Q, \\
\text { and } \overline{P Q} \text { is adj. to } \angle Q . \\
\mathrm{m} \angle Q=\tan ^{-1}\left(\frac{7}{5}\right) \approx 54^{\circ}
\end{gathered}
$$

The acute $\angle s$ of a rt. Δ are comp. $\mathrm{m} \angle R \approx 90^{\circ}-54^{\circ} \approx 36^{\circ}$

8-3 Solving Right Triangles

Check It Out! Example 4

The coordinates of the vertices of $\triangle R S T$ are $R(-3,5), S(4,5)$, and $T(4,-2)$. Find the side lengths to the nearest hundredth and the angle measures to the nearest degree.

8-3 Solving Right Triangles

Check It Out! Example 4 Continued

Step 1 Find the side lengths. Plot points R, S, and T.

$$
R S=S T=7
$$

By the Distance Formula,

$$
\begin{aligned}
R T & =\sqrt{(4-(-3))^{2}+(-2-5)^{2}} \\
& =\sqrt{(7)^{2}+(-7)^{2}} \\
& =\sqrt{49+49}=7 \sqrt{2} \approx 9.90
\end{aligned}
$$

8-3 Solving Right Triangles

Check It Out! Example 4 Continued

Step 2 Find the angle measures.

$$
\begin{aligned}
& \mathrm{m} \angle S=90^{\circ} \\
& \mathrm{m} \angle T=\tan ^{-1}\left(\frac{7}{7}\right)=45^{\circ}
\end{aligned}
$$

$\mathrm{m} \angle R \approx 90^{\circ}-45^{\circ} \approx 45^{\circ}$
$\overline{R S}$ and $\overline{S T}$ are \perp.
$\overline{R S}$ is opp. $\angle T$, and $\overline{S T}$ is adj. $\angle T$.

The acute $\angle \mathrm{s}$ of a rt. Δ are comp.

8-3 Solving Right Triangles

Lesson Quiz: Part II

Find the unknown measures. Round lengths to the nearest hundredth and angle measures to the nearest degree.

$$
D F \approx 5.7 ; \mathrm{m} \angle D \approx 68^{\circ} ;
$$

$$
\mathrm{m} \angle F \approx 22^{\circ}
$$

$A C \approx 0.63 ; B C \approx 2.37$;
$\mathrm{m} \angle B=15^{\circ}$

8-3 Solving Right Triangles

Lesson Quiz: Part III

6. The coordinates of the vertices of $\triangle M N P$ are $M(-3,-2), N(-3,5)$, and $P(6,5)$. Find the side lengths to the nearest hundredth and the angle measures to the nearest degree.
$M N=7 ; N P=9 ; M P \approx 11.40 ; \mathrm{m} \angle N=90^{\circ}$; $\mathrm{m} \angle M \approx 52^{\circ} ; \mathrm{m} \angle P \approx 38^{\circ}$

8-3 Solving Right Triangles

Homework:

WS 8.3

