

Holt Geometry

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

h

Find each length. Round to the nearest tenth.

3. *CB* **6.1**

4. *AC* **16.2**

Holt Geometry

8.3 – Find missing angles using Trig -- Solve Right Triangles

Holt Geometry

In Lesson 8-2, you learned that sin $30^\circ = 0.5$. Conversely, if you know that the sine of an acute angle is 0.5, you can conclude that the angle measures 30°. This is written as $\sin^{-1}(0.5) = 30^\circ$.

Inverse Trigonometric Functions

If sin
$$A = x$$
, then sin⁻¹ $x = m \angle A$.

f cos
$$A = x$$
, then cos⁻¹ $x = m \angle A$.

If
$$tan A = x$$
, then $tan^{-1}x = m \angle A$.

***To find unknown angles in a Right Triangle, we use inverse trig functions

****To know which trig function to use, look at what sides are given to us.

Find the measure of the missing angle.

Find the measure of the missing angle.

Holt Geometry

Find the measure of the missing angle.

Example 3: Solving Right Triangles

Find the unknown measures. Round lengths to the nearest hundredth and angle measures to the nearest degree.

$$RT^{2} = RS^{2} + ST^{2}$$

(5.7)² = 5² + ST²
So ST = $\sqrt{7.49} \approx 2.74$.
 $m \angle R = \cos^{-1} \left(\frac{5}{5.7}\right) \approx 29^{\circ}$
Since the acute angles of a right triangle are complementary, $m \angle T \approx 90^{\circ} - 29^{\circ} \approx 61^{\circ}$.

Holt Geometry

Check It Out! Example 3

Find the unknown measures. Round lengths to the nearest hundredth and angle measures to the nearest degree.

Since the acute angles of a right triangle are complementary, $m\angle D = 90^\circ - 58^\circ = 32^\circ$.

 $\tan 32^{\circ} = \frac{EF}{14}$, so $EF = 14 \tan 32^{\circ}$. $EF \approx 8.75$ $DF^2 = ED^2 + EF^2$ $DF^2 = 14^2 + 8.75^2$ $DF \approx 16.51$

Problem Solving Application

A contractor is building a wheelchair ramp for a doorway that is 1.2 ft above the ground. To meet ADA guidelines, the ramp will make an angle of 4.8° with the ground. To the nearest hundredth of a foot, what is the horizontal distance covered by the ramp?

Example 4: Solving a Right Triangle in the Coordinate Plane

The coordinates of the vertices of $\triangle PQR$ are P(-3, 3), Q(2, 3), and R(-3, -4). Find the side lengths to the nearest hundredth and the angle measures to the nearest degree.

Holt Geometry

Example 4 Continued

Step 1 Find the side lengths. Plot points *P*, *Q*, and *R*.

$$PR = 7$$
 $PQ = 5$

By the Distance Formula,

$$QR = \sqrt{(-3-2)^2 + (-4-3)^2}$$
$$= \sqrt{(-5)^2 + (-7)^2}$$
$$= \sqrt{25+49} = \sqrt{74} \approx 8.60$$

Example 4 Continued

r

Step 2 Find the angle measures.

Holt Geometry

n∠P = 90°
$$\overrightarrow{PQ}$$
 and \overrightarrow{PR} are ⊥.
 \overrightarrow{PR} is opp. ∠Q,
and \overrightarrow{PQ} is adj. to ∠Q.
n∠Q = tan⁻¹ $\left(\frac{7}{5}\right) \approx 54^{\circ}$

The acute \angle s of a rt. \triangle are comp.

$$m \angle R \approx 90^\circ - 54^\circ \approx 36^\circ$$

Check It Out! Example 4

The coordinates of the vertices of $\triangle RST$ are R(-3, 5), S(4, 5), and T(4, -2). Find the side lengths to the nearest hundredth and the angle measures to the nearest degree.

Check It Out! Example 4 Continued

Step 1 Find the side lengths. Plot points *R*, *S*, and *T*.

$$RS = ST = 7$$

By the Distance Formula,

$$RT = \sqrt{\left(4 - \left(-3\right)\right)^2 + \left(-2 - 5\right)^2}$$
$$= \sqrt{\left(7\right)^2 + \left(-7\right)^2}$$
$$= \sqrt{49 + 49} = 7\sqrt{2} \approx 9.90$$

Check It Out! Example 4 Continued

Step 2 Find the angle measures.

 $m\angle S = 90^{\circ}$

$$m \angle T = \tan^{-1}\left(\frac{7}{7}\right) = 45^\circ$$

 $m\angle R \approx 90^\circ - 45^\circ \approx 45^\circ$

 \overrightarrow{RS} and \overrightarrow{ST} are \bot . \overrightarrow{RS} is opp. $\angle T$, and \overrightarrow{ST} is adj. $\angle T$.

The acute $\angle s$ of a rt. \triangle are comp.

Lesson Quiz: Part II

Find the unknown measures. Round lengths to the nearest hundredth and angle measures to the nearest degree.

 $DF \approx 5.7$; m $\angle D \approx 68^{\circ}$; m $\angle F \approx 22^{\circ}$

AC ≈ 0.63; *BC* ≈ 2.37; m ∠B = 15°

Lesson Quiz: Part III

6. The coordinates of the vertices of ΔMNP are M(-3, -2), N(-3, 5), and P(6, 5). Find the side lengths to the nearest hundredth and the angle measures to the nearest degree.

 $MN = 7; NP = 9; MP \approx 11.40; m \angle N = 90^{\circ}; m \angle M \approx 52^{\circ}; m \angle P \approx 38^{\circ}$

Homework:

WS 8.3

Holt Geometry