8-2 Trigonometric Ratios

Warm-Up

Write each trig ratio as a fraction. Reduce your answer.

1. $\operatorname{Sin} X$
2. Tan Z
3. $\operatorname{Cos} X$

8-2 Trigonometric Ratios

Objectives

Find the sine, cosine, and tangent of an acute angle.

Use trigonometric ratios to find side lengths in right triangles and to solve real-world problems.

8-2 Trigonometric Ratios

Example 2: Finding Trigonometric Ratios in Special Right Triangles

Use a special right triangle to write cos 30° as a fraction.

$\cos 30^{\circ}=\frac{s \sqrt{3}}{2 s}=\frac{\sqrt{3}}{2} \quad$ The cosine of an \angle is $\frac{\text { adj. leg }}{\text { hyp. }}$.

8-2 Trigonometric Ratios

Check It Out! Example 2

Use a special right triangle to write tan 45° as a fraction.

8-2 Trigonometric Ratios

Example 4A: Using Trigonometric Ratios to Find Lengths

Find the length. Round to the nearest hundredth. BC

$\overline{B C}$ is adjacent to the given angle, $\angle B$. You are given $A C$, which is opposite $\angle B$. Since the adjacent and opposite legs are involved, use a tangent ratio.

8-2 Trigonometric Ratios

Example 4A Continued

$\tan B=\frac{\mathrm{opp} . \mathrm{leg}}{\mathrm{adj} . \operatorname{leg}}=\frac{A C}{B C} \quad$ Write a trigonometric ratio.
$\tan 15^{\circ}=\frac{10.2}{B C}$
Substitute the given values.
$B C=\frac{10.2}{\tan 15^{\circ}}$
$B C \approx 38.07 \mathrm{ft}$

Multiply both sides by BC and divide by $\tan 15^{\circ}$.

Simplify the expression.

8-2 Trigonometric Ratios

Caution!

Do not round until the final step of your answer. Use the values of the trigonometric ratios provided by your calculator.

8-2 Trigonometric Ratios

Example 4B: Using Trigonometric Ratios to Find Lengths

Find the length. Round to the nearest hundredth. QR

$\overline{Q R}$ is opposite to the given angle, $\angle P$. You are given PR, which is the hypotenuse. Since the opposite side and hypotenuse are involved, use a sine ratio.

8-2 Trigonometric Ratios

Example 4B Continued

$\sin P=\frac{\text { opp. leg }}{\text { hyp. }}=\frac{Q R}{P R}$
Write a trigonometric ratio.
$\sin 63^{\circ}=\frac{Q R}{12.9} \quad$ Substitute the given values.
$12.9\left(\sin 63^{\circ}\right)=Q R \quad$ Multiply both sides by 12.9.
$11.49 \mathrm{~cm} \approx Q R \quad$ Simplify the expression.

8-2 Trigonometric Ratios

Example 4C: Using Trigonometric Ratios to Find Lengths

Find the length. Round to the nearest hundredth.

FD

$\overline{F D}$ is the hypotenuse. You are given $E F$, which is adjacent to the given angle, $\angle F$. Since the adjacent side and hypotenuse are involved, use a cosine ratio.

8-2 Trigonometric Ratios

Example 4C Continued

$$
\cos F=\frac{\mathrm{adj} . \mathrm{leg}}{\text { hyp }}=\frac{E F}{F D}
$$

Write a trigonometric ratio.
$\cos 39^{\circ}=\frac{20}{F D}$
$F D=\frac{20}{\cos 39^{\circ}}$
$F D \approx 25.74 \mathrm{~m}$
Simplify the expression.

8-2 Trigonometric Ratios

Check It Out! Example 4a

Find the length. Round to the nearest hundredth.

 DF

8-2 Trigonometric Ratios

Check It Out! Example 4a Continued

$\sin D=\frac{\text { opp. leg }}{\text { hyp }}=\frac{E F}{D F}$ Write a trigonometric ratio.
$\sin 51^{\circ}=\frac{17}{D F}$
Substitute the given values.

$$
\begin{aligned}
& D F=\frac{17}{\sin 51^{\circ}} \\
& D F \approx 21.87 \mathrm{~cm}
\end{aligned}
$$

Multiply both sides by DF and divide by $\sin 51^{\circ}$.
Simplify the expression.

8-2 Trigonometric Ratios

Check It Out! Example 4b

Find the length. Round to the nearest hundredth.

ST

$\overline{S T}$ is a leg. You are given $T U$, which is the hypotenuse. Since the adjacent side and hypotenuse are involved, use a cosine ratio.

8-2 Trigonometric Ratios

Check It Out! Example 4b Continued

$\cos T=\frac{\text { adj. leg }}{\text { hyp }}=\frac{S T}{T U} \quad$ Write a trigonometric ratio.
$\cos 42^{\circ}=\frac{S T}{9.5}$
Substitute the given values.

ST $=9.5\left(\cos 42^{\circ}\right) \quad$ Multiply both sides by 9.5.
$S T \approx 7.06 \mathrm{in} . \quad$ Simplify the expression.

8-2 Trigonometric Ratios

Check It Out! Example 4c

Find the length. Round to the nearest hundredth.

BC

$\overline{B C}$ is a leg. You are given AC, which is the opposite side to given angle, $\angle B$. Since the opposite side and adjacent side are involved, use a tangent ratio.

8-2 Trigonometric Ratios

Check It Out! Example 4c Continued

$\tan B=\frac{\mathrm{opp} . \operatorname{leg}}{\text { adj. leg }}=\frac{A C}{B C} \quad$ Write a trigonometric ratio.
$\tan 18^{\circ}=\frac{12}{B C}$
Substitute the given values.

$$
B C=\frac{12}{\tan 18^{\circ}}
$$

Multiply both sides by BC and divide by $\tan 18^{\circ}$.
$B C \approx 36.93 \mathrm{ft}$
Simplify the expression.

8-2 Trigonometric Ratios

Check It Out! Example 4d

Find the length. Round to the nearest hundredth.

JL

\bar{J} is the opposite side to the given angle, $\angle K$. You are given $K L$, which is the hypotenuse. Since the opposite side and hypotenuse are involved, use a sine ratio.

8-2 Trigonometric Ratios

Check It Out! Example 4d Continued

$\sin K=\frac{\text { opp. leg }}{\text { hyp }}=\frac{J L}{K L} \quad$ Write a trigonometric ratio.
$\sin 27^{\circ}=\frac{\mathrm{JL}}{13.6}$
Substitute the given values.
$J L=13.6\left(\sin 27^{\circ}\right)$
Multiply both sides by 13.6.
$J L \approx 6.17 \mathrm{~cm}$
Simplify the expression.

8-2 Trigonometric Ratios

Lesson Quiz: Part I

Use a special right triangle to write each trigonometric ratio as a fraction.

1. $\sin 60^{\circ} \frac{\sqrt{3}}{2}$
2. $\cos 45^{\circ} \frac{\sqrt{2}}{2}$

Use your calculator to find each trigonometric ratio. Round to the nearest hundredth.
3. $\tan 84^{\circ} 9.51 \quad$ 4. $\cos 13^{\circ} 0.97$

8-2 Trigonometric Ratios

Lesson Quiz: Part II

Find each length. Round to the nearest tenth.
5. $C B \quad 6.1$
6. $A C 16.2$

Use your answers from Items 5 and 6 to write each trigonometric ratio as a fraction and as a decimal rounded to the nearest hundredth.
7. $\sin A \frac{6.1}{16.2} \approx 0.38$ 8. $\cos A \frac{15}{16.2} \approx 0.93$ 9. $\tan A \frac{6.1}{15} \approx 0.41$

8-2 Trigonometric Ratios

HOMEWORK

WS 8.2B - Trig - Missing Sides

