

## Warm-Up

Write each trig ratio as a fraction. Reduce your answer.





### **Objectives**

Find the sine, cosine, and tangent of an acute angle.

Use trigonometric ratios to find side lengths in right triangles and to solve real-world problems.

### Example 2: Finding Trigonometric Ratios in Special Right Triangles

# Use a special right triangle to write cos 30° as a fraction.



**Holt Geometry** 



### **Check It Out! Example 2**

## Use a special right triangle to write tan 45° as a fraction.



 $\tan 45^\circ = \frac{s}{s} = 1$ 

Draw and label a 
$$45^{\circ}-45^{\circ}-90^{\circ} \Delta$$
.  
The tangent of an  $\angle$  is  $\frac{opp. leg}{adj. leg}$ .

### Example 4A: Using Trigonometric Ratios to Find Lengths

Find the length. Round to the nearest hundredth.



BC

 $\overline{BC}$  is adjacent to the given angle,  $\angle B$ . You are given AC, which is opposite  $\angle B$ . Since the adjacent and opposite legs are involved, use a tangent ratio.

**Example 4A Continued** 



$$\tan B = \frac{\operatorname{opp.} \operatorname{leg}}{\operatorname{adj.} \operatorname{leg}} = \frac{AC}{BC}$$
Write a trigonometric ratio. $\tan 15^\circ = \frac{10.2}{BC}$ Substitute the given values. $BC = \frac{10.2}{\tan 15^\circ}$ Multiply both sides by BC  
and divide by tan 15^\circ. $BC \approx 38.07 \operatorname{ft}$ Simplify the expression.



#### **Caution!**

Do not round until the final step of your answer. Use the values of the trigonometric ratios provided by your calculator.

**Holt Geometry** 

### Example 4B: Using Trigonometric Ratios to Find Lengths

Find the length. Round to the nearest hundredth.

QR



 $\overline{QR}$  is opposite to the given angle,  $\angle P$ . You are given PR, which is the hypotenuse. Since the opposite side and hypotenuse are involved, use a sine ratio.



**Holt Geometry** 

### Example 4C: Using Trigonometric Ratios to Find Lengths

Find the length. Round to the nearest hundredth.

FD



 $\overline{FD}$  is the hypotenuse. You are given EF, which is adjacent to the given angle,  $\angle F$ . Since the adjacent side and hypotenuse are involved, use a cosine ratio.



### **Example 4C Continued**



$$\cos F = \frac{\text{adj. leg}}{\text{hyp}} = \frac{EF}{FD}$$
$$\cos 39^\circ = \frac{20}{FD}$$
$$FD = \frac{20}{\cos 39^\circ}$$

 $FD \approx 25.74$  m

Write a trigonometric ratio.

Substitute the given values.

Multiply both sides by FD and divide by cos 39°.

Simplify the expression.

**Holt Geometry** 



#### **Check It Out! Example 4a**

## Find the length. Round to the nearest hundredth.

DF



**Holt Geometry** 

**Check It Out! Example 4a Continued** 



 $sin D = \frac{opp. leg}{hyp} = \frac{EF}{DF}$  Write a trigonometric ratio.  $sin 51^{\circ} = \frac{17}{DF}$   $DF = \frac{17}{sin 51^{\circ}}$   $Multiply both sides by DF and divide by sin 51^{\circ}.$   $DF \approx 21.87 \text{ cm}$  Simplify the expression.

**Holt Geometry** 



### **Check It Out! Example 4b**

# Find the length. Round to the nearest hundredth.

ST



 $\overline{ST}$  is a leg. You are given TU, which is the hypotenuse. Since the adjacent side and hypotenuse are involved, use a cosine ratio.

### **Check It Out! Example 4b Continued**





 $\cos 42^\circ = \frac{ST}{9.5}$  Substitute the given values.

 $ST = 9.5(\cos 42^{\circ})$  Multiply both sides by 9.5.

 $ST \approx 7.06$  in. Simplify the expression.

**Holt Geometry** 



### **Check It Out! Example 4c**



**BC** is a leg. You are given AC, which is the opposite side to given angle,  $\angle B$ . Since the opposite side and adjacent side are involved, use a tangent ratio.

### **Check It Out! Example 4c Continued**



$$\tan B = \frac{\text{opp. leg}}{\text{adj. leg}} = \frac{AC}{BC}$$
$$\tan 18^\circ = \frac{12}{BC}$$
$$BC = \frac{12}{\tan 18^\circ}$$

*BC* ≈ 36.93 ft

**Holt Geometry** 

Write a trigonometric ratio.

Substitute the given values.

Multiply both sides by BC and divide by tan 18°.

Simplify the expression.



### **Check It Out! Example 4d**

# Find the length. Round to the nearest hundredth.

JL



 $\overline{JL}$  is the opposite side to the given angle,  $\angle K$ . You are given KL, which is the hypotenuse. Since the opposite side and hypotenuse are involved, use a sine ratio.

### **Check It Out! Example 4d Continued**



 $\sin K = \frac{\text{opp. leg}}{\text{hyp}} = \frac{JL}{KL}$  Write a trigonometric ratio.  $\sin 27^{\circ} = \frac{JL}{13.6}$  Substitute the given values.

 $JL = 13.6(sin 27^{\circ})$ 

Multiply both sides by 13.6.

 $JL \approx 6.17 \text{ cm}$  Simplify the expression.

**Holt Geometry** 



### **Lesson Quiz: Part I**

## Use a special right triangle to write each trigonometric ratio as a fraction.

**1.** sin 60°  $\frac{\sqrt{3}}{2}$  **2.** cos 45°  $\frac{\sqrt{2}}{2}$ 

Use your calculator to find each trigonometric ratio. Round to the nearest hundredth.

**3.** tan 84° 9.51 **4.** cos 13° 0.97



### **Lesson Quiz: Part II**

Find each length. Round to the nearest c



Use your answers from Items 5 and 6 to write each trigonometric ratio as a fraction and as a decimal rounded to the nearest hundredth.

**7.** sin 
$$A = \frac{6.1}{16.2} \approx 0.38$$
 **8.** cos  $A = \frac{15}{16.2} \approx 0.93$  **9.** tan  $A = \frac{6.1}{15} \approx 0.41$ 



### HOMEWORK

### WS 8.2B – Trig – Missing Sides

**Holt Geometry**