Warm Up Write each fraction as a decimal rounded to the nearest hundredth. **1.** $\frac{2}{3}$ 0.67 **2.** $\frac{7}{24}$ 0.29 Solve each equation. **3.** $0.8 = \frac{5.8}{x}$ x = 7.25 **4.** $0.94 = \frac{x}{85}$ x = 7.99

Holt Geometry

Objectives

Find the sine, cosine, and tangent of an acute angle.

Use trigonometric ratios to find side lengths in right triangles and to solve real-world problems.

What does SOH-CAH-TOA stand for? Give every letter in the acronym.

Holt Geometry

A **trigonometric ratio** is a ratio of two sides of a right triangle.

Holt Geometry

Holt Geometry

$\sin = \frac{opposite}{hypotenuse}$

Holt Geometry

$\cos = \frac{adjacent}{hypotenuse}$

Holt Geometry

 $\tan = \frac{opposite}{adjacent}$

Holt Geometry

SOH – CAH – TOA

H refers to the Hypotenuse while O and A refer to the Legs. Remember, each triangle will have a Hypotenuse (the longest side) and two Legs (the shorter sides)

Writing Math

In trigonometry, the letter of the vertex of the angle is often used to represent the measure of that angle. For example, the sine of $\angle A$ is written as sin A.

Holt Geometry

Example 1A: Finding Trigonometric Ratios

Write the trigonometric ratio as a fraction and as a decimal rounded to the nearest hundredth.

sin J

$$\sin J = \frac{60}{61} \approx 0.98$$
 The sine of an \angle is $\frac{opp. leg}{hyp.}$.

Example 1B: Finding Trigonometric Ratios

Write the trigonometric ratio as a fraction and as a decimal rounded to the nearest hundredth.

cos J

Example 1C: Finding Trigonometric Ratios

Write the trigonometric ratio as a fraction and as a decimal rounded to the nearest hundredth.

tan K

 $\tan K = \frac{11}{60} \approx 0.18$ The tangent of $an \angle is \frac{opp. leg}{adj. leg}$.

Check It Out! Example 1a

Write the trigonometric ratio as a fraction and as a decimal rounded to the nearest hundredth.

cos A

Check It Out! Example 1b

Write the trigonometric ratio as a fraction and as a decimal rounded to the nearest hundredth.

tan B

 $\tan B = \frac{24}{7} \approx 3.43$ The tangent of $an \angle is \frac{opp. leg}{adj. leg}$.

Check It Out! Example 1c

Write the trigonometric ratio as a fraction and as a decimal rounded to the nearest hundredth.

sin B

$$\sin B = \frac{24}{25} \approx 0.96$$
 The sine of an \angle is $\frac{opp. leg}{hyp.}$.

Check It Out! Example 2

Use a special right triangle to write tan 45° as a fraction.

 $\tan 45^\circ = \frac{s}{s} = 1$

Draw and label a
$$45^{\circ}-45^{\circ}-90^{\circ} \Delta$$
.
The tangent of an \angle is $\frac{opp. leg}{adj. leg}$.

Example 3A: Calculating Trigonometric Ratios

Use your calculator to find the trigonometric ratio. Round to the nearest hundredth.

sin 52°

Caution!

Be sure your calculator is in degree mode, not radian mode.

sin 52° \approx 0.79

Holt Geometry

Example 3B: Calculating Trigonometric Ratios

Use your calculator to find the trigonometric ratio. Round to the nearest hundredth.

cos 19°

$$\cos~19^{o}\approx~0.95$$

Holt Geometry

Example 3C: Calculating Trigonometric Ratios

Use your calculator to find the trigonometric ratio. Round to the nearest hundredth.

tan 65°

Holt Geometry

Check It Out! Example 3a

Use your calculator to find the trigonometric ratio. Round to the nearest hundredth.

tan 11°

tan 11° \approx 0.19

Holt Geometry

Check It Out! Example 3b

Use your calculator to find the trigonometric ratio. Round to the nearest hundredth.

sin 62°

sin 62° ≈ 0.88

Holt Geometry

Check It Out! Example 3c

Use your calculator to find the trigonometric ratio. Round to the nearest hundredth.

cos 30°

 $\cos 30^{\circ} \approx 0.87$

Holt Geometry

HOMEWORK

Page 529 # 3-8, 12 - 17

Holt Geometry