1-7 Transformations in the Coordinate Plane

Bellwork

Tell whether the angles are only adjacent, Adjacent and form a linear pair, or not adjacent.

1. Angle 1 and Angle 2
2. Angle 4 and Angle 5
3. Angle 3 and Angle 4

If the measure of angle T is $(5 x-10)$, find the measure of:
4. Supplement of angle T
5. Complement of angle T

Objectives

Identify and graph reflections, rotations, and translations.

1-7 Transformations in the Coordinate Plane

A transformation is a change in the position, size, or shape of a figure.

The original figure is called the preimage.
The resulting figure is called the image.
A transformation maps the preimage to the image.
Arrow notation (\rightarrow) is used to describe a transformation, and primes (') are used to label the image.

1-7 Transformations in the Coordinate Plane

REFLECTION

Reflection : A flip across a line. Each point and its image are the same distance from the line of reflection.

Rotation: A turn about a point.

TRANSLATION

Transformation: is a slide where all the points move the same distance in the same direction.

Translations can also be described by a rule such as $(x, y) \rightarrow(x+a, y+b)$.

1-7 Transformations in the Coordinate Plane

Example 1A: Identifying Transformation

Identify the transformation. Then use arrow notation to describe the transformation.

The transformation cannot be a reflection because each point and its image are not the same distance from a line of reflection.
90° rotation, $\triangle A B C \rightarrow \triangle A^{\prime} B^{\prime} C^{\prime}$

1-7 Transformations in the Coordinate Plane

Example 1B: Identifying Transformation

Identify the transformation. Then use arrow notation to describe the transformation.

The transformation cannot be a translation because each point and its image are not in the same relative position. reflection, $D E F G \rightarrow D^{\prime} E^{\prime} F^{\prime} G^{\prime}$

1-7 Transformations in the Coordinate Plane

Check It Out! Example 1

Identify each transformation. Then use arrow notation to describe the transformation.

translation; $M N O P \rightarrow M^{\prime} N^{\prime} O^{\prime} P^{\prime}$
b.

rotation; $\triangle X Y Z \rightarrow \Delta X^{\prime} Y^{\prime} Z^{\prime}$

1-7 Transformations in the Coordinate Plane

Example 2: Drawing and Identifying Transformations A figure has vertices at $A(1,-1), B(2,3)$, and $C(4,-2)$. After a transformation, the image of the figure has vertices at $A^{\prime}(-1,-1), B^{\prime}(-2,3)$, and $C^{\prime}(-4,-2)$. Draw the preimage and image. Then identify the transformation.

Plot the points. Then use a straightedge to connect the vertices.

The transformation is a reflection across the y-axis because each point and its image are the same distance from the y-axis.

1-7 Transformations in the Coordinate Plane

Check It Out! Example 2

A figure has vertices at $E(2,0), F(2,-1), G(5,-1)$, and $H(5,0)$. After a transformation, the image of the figure has vertices at $E^{\prime}(0,2), F^{\prime}(1,2), G^{\prime}(1,5)$, and $H^{\prime}(0,5)$. Draw the preimage and image. Then identify the transformation.

Plot the points. Then use a straightedge to connect the vertices.

The transformation is a 90° counterclockwise rotation.

1-7 Transformations in the Coordinate Plane

Example 3: Translations in the Coordinate Plane
Find the coordinates for the image of $\triangle A B C$ after the translation $(x, y) \rightarrow(x+2, y-1)$. Draw the image.

Step 1 Find the coordinates of $\triangle A B C$.

The vertices of $\triangle A B C$ are $A(-4,2)$, $B(-3,4), C(-1,1)$.

1-7 Transformations in the Coordinate Plane

Example 3 Continued

Step 2 Apply the rule to find the vertices of the image.
$A^{\prime}(-4+2,2-1)=A^{\prime}(-2,1)$
$B^{\prime}(-3+2,4-1)=B^{\prime}(-1,3)$
$C^{\prime}(-1+2,1-1)=C^{\prime}(1,0)$

Step 3 Plot the points. Then finish drawing the image by
 using a straightedge to connect the vertices.

1-7 Transformations in the Coordinate Plane

Check It Out! Example 3

Find the coordinates for the image of JKLM after the translation $(x, y) \rightarrow(x-2, y+4)$. Draw the image.

Step 1 Find the coordinates of JKLM.

The vertices of $J K L M$ are $J(1,1)$, $K(3,1), L(3,-4), M(1,-4)$,

1-7 Transformations in the Coordinate Plane

Check It Out! Example 3 Continued

Step 2 Apply the rule to find the vertices of the image.
$J^{\prime}(1-2,1+4)=J^{\prime}(-1,5)$
$K^{\prime}(3-2,1+4)=K^{\prime}(1,5)$
$L^{\prime}(3-2,-4+4)=L^{\prime}(1,0)$
$M^{\prime}(1-2,-4+4)=M^{\prime}(-1,0)$
Step 3 Plot the points. Then finish drawing the image by using a straightedge to connect the vertices.

1-7 Transformations in the Coordinate Plane

Lesson Quiz: Part I

1. A figure has vertices at $X(-1,1), Y(1,4)$, and $Z(2,2)$. After a transformation, the image of the figure has vertices at $X^{\prime}(-3,2), Y^{\prime}(-1,5)$, and $Z^{\prime}(0,3)$. Draw the preimage and the image. Identify the transformation.

translation

2. What transformation is suggested by the wings of an airplane? reflection

1-7 Transformations in the Coordinate Plane

Lesson Quiz: Part II

3. Given points $P(-2,-1)$ and $Q(-1,3)$, draw $\overline{P Q}$ and its reflection across the y-axis.

4. Find the coordinates of the image of $F(2,7)$ after the translation $(x, y) \rightarrow(x+5, y-6)$.
$(7,1)$
