1-7) Transformations in the Coordinate Plane

Bellwork

Tell whether the angles are only adjacent, Adjacent and form a linear pair, or not adjacent.

- 1. Angle 1 and Angle 2
- 2. Angle 4 and Angle 5
- 3. Angle 3 and Angle 4

If the measure of angle T is (5x - 10), find the measure of:

4. Supplement of angle T 5. Complement of angle T

1-7 Transformations in the Coordinate Plane

Objectives

Identify and graph reflections, rotations, and translations.

Holt Geometry

A **transformation** is a change in the position, size, or shape of a figure.

The original figure is called the **preimage**.

The resulting figure is called the **image**.

A transformation *maps* the preimage to the image.

Arrow notation (\rightarrow) is used to describe a transformation, and primes (') are used to label the image.

Holt Geometry

<u>Reflection</u> : A flip across a line. Each point and its image are the same distance from the line of reflection.

Rotation: A turn about a point.

Holt Geometry

<u>Transformation</u>: is a slide where all the points move the same distance in the same direction.

Translations can also be described by a rule such as $(x, y) \rightarrow (x + a, y + b)$.

Example 1A: Identifying Transformation

Identify the transformation. Then use arrow notation to describe the transformation.

The transformation cannot be a reflection because each point and its image are not the same distance from a line of reflection.

90° rotation, $\Delta ABC \rightarrow \Delta A'B'C'$

Example 1B: Identifying Transformation

Identify the transformation. Then use arrow notation to describe the transformation.

The transformation cannot be a translation because each point and its image are not in the same relative position.

reflection, $DEFG \rightarrow D'E'F'G'$

Check It Out! Example 1

Identify each transformation. Then use arrow notation to describe the transformation.

translation; $MNOP \rightarrow M'N'O'P'$ rotation; $\Delta XYZ \rightarrow \Delta X'Y'Z'$

Holt Geometry

1-7) Transformations in the Coordinate Plane

Example 2: Drawing and Identifying Transformations

A figure has vertices at A(1, -1), B(2, 3), and C(4, -2). After a transformation, the image of the figure has vertices at A'(-1, -1), B'(-2, 3), and C'(-4, -2). Draw the preimage and image. Then identify the transformation.

Plot the points. Then use a straightedge to connect the vertices.

The transformation is a reflection across the y-axis because each point and its image are the same distance from the y-axis.

Check It Out! Example 2

A figure has vertices at E(2, 0), F(2, -1), G(5, -1), and H(5, 0). After a transformation, the image of the figure has vertices at E'(0, 2), F'(1, 2), G'(1, 5), and H'(0, 5). Draw the preimage and image. Then identify the transformation.

Plot the points. Then use a straightedge to connect the vertices.

The transformation is a 90° counterclockwise rotation.

1-7) Transformations in the Coordinate Plane

Example 3: Translations in the Coordinate Plane

Find the coordinates for the image of $\triangle ABC$ after the translation $(x, y) \rightarrow (x + 2, y - 1)$. Draw the image.

Step 1 Find the coordinates of $\triangle ABC$.

The vertices of $\triangle ABC$ are A(-4, 2), B(-3, 4), C(-1, 1).

Example 3 Continued

Step 2 Apply the rule to find the vertices of the image.

$$A'(-4 + 2, 2 - 1) = A'(-2, 1)$$

 $B'(-3 + 2, 4 - 1) = B'(-1, 3)$
 $C'(-1 + 2, 1 - 1) = C'(1, 0)$

Step 3 Plot the points. Then finish drawing the image by using a straightedge to connect the vertices.

Check It Out! Example 3

Find the coordinates for the image of *JKLM* after the translation $(x, y) \rightarrow (x - 2, y + 4)$. Draw the image.

Step 1 Find the coordinates of *JKLM*.

The vertices of *JKLM* are *J*(1, 1), *K*(3, 1), *L*(3, -4), *M*(1, -4), .

Check It Out! Example 3 Continued

Step 2 Apply the rule to find the vertices of the image.

J'(1 - 2, 1 + 4) = J'(-1, 5) K'(3 - 2, 1 + 4) = K'(1, 5) L'(3 - 2, -4 + 4) = L'(1, 0)M'(1 - 2, -4 + 4) = M'(-1, 0)

Step 3 Plot the points. Then finish drawing the image by using a straightedge to connect the vertices.

1-7 Transformations in the Coordinate Plane

Lesson Quiz: Part I

1. A figure has vertices at X(−1, 1), Y(1, 4), and Z(2, 2). After a transformation, the image of the figure has vertices at X'(−3, 2), Y'(−1, 5), and Z'(0, 3). Draw the preimage and the image. Identify the transformation.

2. What transformation is suggested by the wings of an airplane? reflection

Holt Geometry

Lesson Quiz: Part II

3. Given points P(-2, -1) and Q(-1, 3), draw \overline{PQ} and its reflection across the *y*-axis.

4. Find the coordinates of the image of F(2, 7) after the translation $(x, y) \rightarrow (x + 5, y - 6)$. (7, 1)