

Warm-up

Find the midpoint of a segment going from (24,3) to (27,33)

Holt Geometry

Use the Distance to find the distance between two points.

Holt Geometry

Distance Formula

The distance between two points $(x_1, y_1), (x_2, y_2)$ can be found using the formula:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Holt Geometry

Steps:

- 1. Label the points $(x_1, y_1), (x_2, y_2)$
- 2. Write the formula
- 3. Plug the points into the formula
- 4. Simplify

Example 3: Using the Distance Formula

Find JK.

Step 1 Find the coordinates of each point. *F*(1, 2), *G*(5, 5), *J*(-4, 0), *K*(-1, -3)

Holt Geometry

Example 3 Continued

Step 2 Use the Distance Formula.

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$JK = \sqrt{\left[\left(-1 - \left(-4 \right) \right) \right]^2 + \left(-3 - 0 \right)^2}$$

$$=\sqrt{3^2+\left(-3\right)^2}$$

$$=\sqrt{18}=3\sqrt{2}$$

Check It Out! Example 3

Find *EF* and *GH*. Then determine if $\overline{EF} \cong \overline{GH}$.

Step 1 Find the coordinates of each point.

Holt Geometry

Check It Out! Example 3 Continued

Step 2 Use the Distance Formula.

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$EF = \sqrt{[-5 - (-2)]^2 + (5 - 1)^2} \quad GH = \sqrt{[3 - (-1)]^2 + [1 - (-2)]^2}$$

$$= \sqrt{(-3)^2 + 4^2} \qquad = \sqrt{4^2 + 3^2}$$

$$= \sqrt{25} = 5 \qquad = \sqrt{25} = 5$$

Since EF = GH, $\overline{EF} \cong \overline{GH}$.

In a right triangle, the two sides that form the right angle are the **legs**.

The side across from the right angle that stretches from one leg to the other is the **hypotenuse**.

In the diagram, **a** and **b** are the lengths of the shorter sides, or legs, of the right triangle. The longest side is called the hypotenuse and has length **c**.

Theorem 1-6-1 (Pythagorean Theorem)

In a right triangle, the sum of the squares of the lengths of the *legs* is equal to the square of the length of the *hypotenuse*.

 $a^2 + b^2 = c^2$

Example 4: Finding Distances in the Coordinate Plane

Use the Distance Formula and the Pythagorean Theorem to find the distance, to the nearest tenth, from D(3, 4) to E(-2, -5).

Example 4 Continued

Method 1

Use the Distance Formula. Substitute the values for the coordinates of **D** and **E** into the Distance Formula.

$$DE = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

= $\sqrt{[(-2) - 3]^2 + [(-5) - 4]^2}$
= $\sqrt{(-5)^2 + (-9)^2}$
= $\sqrt{25 + 81}$
= $\sqrt{106}$
 ≈ 10.3

Holt Geometry

Example 4 Continued

Method 2

Use the Pythagorean Theorem. Count the units for sides **a** and **b**.

Check It Out! Example 4a

Use the Distance Formula and the Pythagorean Theorem to find the distance, to the nearest tenth, from *R* to *S*.

R(3, 2) and *S*(−3, −1)

Method 1

Use the Distance Formula. Substitute the values for the coordinates of **R** and **S** into the Distance Formula.

Midpoint and Distance 1-6 in the Coordinate Plane

Check It Out! Example 4a Continued

Use the Distance Formula and the Pythagorean Theorem to find the distance, to the nearest tenth, from R to S.

$$R(3, 2) \text{ and } S(-3, -1)$$

$$RS = \sqrt{(-3-3)^{2} + (-1-2)^{2}}$$

$$= \sqrt{(-6)^{2} + (-3)^{2}}$$

$$= \sqrt{45}$$

$$= 3\sqrt{5}$$

$$\approx 6.7$$

b

С

Check It Out! Example 4a Continued

Method 2

Use the Pythagorean Theorem. Count the units for sides **a** and **b**.

Check It Out! Example 4b

Use the Distance Formula and the Pythagorean Theorem to find the distance, to the nearest tenth, from *R* to *S*.

R(−4, 5) and *S*(2, −1)

Method 1

Use the Distance Formula. Substitute the values for the coordinates of **R** and **S** into the Distance Formula.

Check It Out! Example 4b Continued

Use the Distance Formula and the Pythagorean Theorem to find the distance, to the nearest tenth, from *R* to *S*.

$$RS = \sqrt{\left[2 - \left(-4\right)\right]^2 + \left(-1 - 5\right)^2}$$
$$= \sqrt{6^2 + \left(-6\right)^2}$$
$$= \sqrt{72}$$
$$= 6\sqrt{2}$$
$$\approx 8.5$$

Check It Out! Example 4b Continued

Method 2

Use the Pythagorean Theorem. Count the units for sides **a** and **b**.

In-Class Work

Page 47 #6, 7, 16, 17

Holt Geometry