Warm-up

Find the midpoint of a segment going from $(24,3)$ to $(27,33)$

Objectives

Use the Distance to find the distance between two points.

Distance Formula:

The distance between two points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ can be found using the formula:

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Steps:

1. Label the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$
2. Write the formula
3. Plug the points into the formula
4. Simplify

Example 3: Using the Distance Formula

Find JK.

Step 1 Find the coordinates of each point.

$$
\begin{aligned}
& F(1,2), G(5,5), J(-4,0), \\
& K(-1,-3)
\end{aligned}
$$

Example 3 Continued

Step 2 Use the Distance Formula.

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
J K & =\sqrt{[(-1-(-4))]^{2}+(-3-0)^{2}} \\
& =\sqrt{3^{2}+(-3)^{2}} \\
& =\sqrt{18}=3 \sqrt{2}
\end{aligned}
$$

Check It Out! Example 3

Find $E F$ and $\boldsymbol{G H}$. Then determine if $\overline{\boldsymbol{E F}} \cong \overline{\boldsymbol{G H}}$.
Step 1 Find the coordinates of each point.
$E(-2,1), F(-5,5), G(-1,-2)$, $H(3,1)$

Check It Out! Example 3 Continued

Step 2 Use the Distance Formula.

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & & \\
E F & =\sqrt{[-5-(-2)]^{2}+(5-1)^{2}} & G H & =\sqrt{[3-(-1)]^{2}+[1-(-2)]^{2}} \\
& =\sqrt{(-3)^{2}+4^{2}} & & =\sqrt{4^{2}+3^{2}} \\
& =\sqrt{25}=5 & & =\sqrt{25}=5
\end{aligned}
$$

Since $E F=G H, \overline{E F} \cong \overline{G H}$.

In a right triangle, the two sides that form the right angle are the legs.

The side across from the right angle that stretches from one leg to the other is the hypotenuse.

In the diagram, \boldsymbol{a} and \boldsymbol{b} are the lengths of the shorter sides, or legs, of the right triangle. The longest side is called the hypotenuse and has length c.

Theorem 1-6-1 Pythagorean Theorem

In a right triangle, the sum of the squares of the lengths of the legs is equal to the square of the length of the hypotenuse.

$$
a^{2}+b^{2}=c^{2}
$$

Midpoint and Distance in the Coordinate Plane

Example 4: Finding Distances in the Coordinate Plane

Use the Distance Formula and the

 Pythagorean Theorem to find the distance, to the nearest tenth, from $D(3,4)$ to $E(-2,-5)$.

Example 4 Continued

Method 1

Use the Distance Formula. Substitute the values for the coordinates of \boldsymbol{D} and \boldsymbol{E} into the Distance Formula.

$$
\begin{aligned}
D E & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{[(-2)-3]^{2}+[(-5)-4]^{2}} \\
& =\sqrt{(-5)^{2}+(-9)^{2}} \\
& =\sqrt{25+81} \\
& =\sqrt{106} \\
& \approx 10.3
\end{aligned}
$$

Example 4 Continued

Method 2

Use the Pythagorean Theorem. Count the units for sides \boldsymbol{a} and \boldsymbol{b}.

$$
\begin{aligned}
a & =5 \text { and } b=9 . \\
c^{2} & =a^{2}+b^{2} \\
& =5^{2}+9^{2} \\
& =25+81 \\
& =106 \\
c & =\sqrt{106} \\
c & =10.3
\end{aligned}
$$

Check It Out! Example 4a

Use the Distance Formula and the Pythagorean Theorem to find the distance, to the nearest tenth, from R to S.
$R(3,2)$ and $S(-3,-1)$
Method 1
Use the Distance Formula. Substitute the values for the coordinates of \boldsymbol{R} and \boldsymbol{S} into the Distance Formula.

Midpoint and Distance in the Coordinate Plane

Check It Out! Example 4a Continued

Use the Distance Formula and the Pythagorean Theorem to find the distance, to the nearest tenth, from R to S.
$R(3,2)$ and $S(-3,-1)$

$$
\begin{aligned}
R S & =\sqrt{(-3-3)^{2}+(-1-2)^{2}} \\
& =\sqrt{(-6)^{2}+(-3)^{2}} \\
& =\sqrt{45} \\
& =3 \sqrt{5} \\
& \approx 6.7
\end{aligned}
$$

Check It Out! Example 4a Continued

Method 2

Use the Pythagorean Theorem. Count the units for sides \boldsymbol{a} and \boldsymbol{b}.

$$
\begin{aligned}
a & =6 \text { and } b=3 . \\
c^{2} & =a^{2}+b^{2} \\
& =6^{2}+3^{2} \\
& =36+9 \\
& =45 \\
c & =\sqrt{45} \\
c & \approx 6.7
\end{aligned}
$$

Check It Out! Example 4b

Use the Distance Formula and the Pythagorean Theorem to find the distance, to the nearest tenth, from R to S.
$R(-4,5)$ and $S(2,-1)$
Method 1
Use the Distance Formula. Substitute the values for the coordinates of \boldsymbol{R} and \boldsymbol{S} into the Distance Formula.

Midpoint and Distance in the Coordinate Plane

Check It Out! Example 4b Continued

Use the Distance Formula and the Pythagorean Theorem to find the distance, to the nearest tenth, from R to S.

$$
R(-4,5) \text { and } S(2,-1)
$$

$$
\begin{aligned}
R S & =\sqrt{[2-(-4)]^{2}+(-1-5)^{2}} \\
& =\sqrt{6^{2}+(-6)^{2}} \\
& =\sqrt{72} \\
& =6 \sqrt{2} \\
& \approx 8.5
\end{aligned}
$$

Check It Out! Example 4b Continued

Method 2

Use the Pythagorean Theorem. Count the units for sides \boldsymbol{a} and \boldsymbol{b}.

$$
\begin{aligned}
a & =6 \text { and } b=6 . \\
c^{2} & =a^{2}+b^{2} \\
& =6^{2}+6^{2} \\
& =36+36 \\
& =72 \\
c & =\sqrt{72} \\
c & \approx 8.5
\end{aligned}
$$

In-Class Work

Page 47 \#6, 7, 16, 17

