1-4 Pairs of Angles

Bellwork Simplify each expression.

1. $90-(x+20) 70-x$
2. $180-(3 x-10) 190-3 x$
3. Ray $B D$ bisects angle $A B C$, the measure of angle $A B C$ equals $4 x+5$, and the measure of angle $A B D$ equals $3 x-1$. What is the value of x ?

1-4) Pairs of Angles

Objectives

Identify adjacent, vertical, complementary, and supplementary angles.

Find measures of pairs of angles.

1-4 Pairs of Angles

Pairs of Angles

Adjacent angles are two angles in the same plane with a common vertex and a common side, but no common interior points. $\angle 1$ and $\angle 2$ are adjacent angles.

A linear pair of angles is a pair of adjacent angles whose noncommon sides are opposite rays. $\angle 3$ and $\angle 4$ form a linear pair.

1-4) Pairs of Angles

Example 1A: Identifying Angle Pairs

Tell whether the angles are only adjacent, adjacent and form a linear pair, or not adjacent.

$\angle A E B$ and $\angle B E D$

$\angle A E B$ and $\angle B E D$ have a common vertex, E, a common side, $\overrightarrow{E B}$, and no common interior points. Their noncommon sides, $\overrightarrow{E A}$ and $\overrightarrow{E D}$, are opposite rays. Therefore, $\angle A E B$ and $\angle B E D$ are adjacent angles and form a linear pair.

1-4) Pairs of Angles

Example 1B: Identifying Angle Pairs

Tell whether the angles are only adjacent, adjacent and form a linear pair, or not adjacent.
$\angle A E B$ and $\angle B E C$

$\angle A E B$ and $\angle B E C$ have a common vertex, E, a common side, $\overrightarrow{E B}$, and no common interior points. Therefore, $\angle A E B$ and $\angle B E C$ are only adjacent angles.

1-4) Pairs of Angles

Example 1C: Identifying Angle Pairs

Tell whether the angles are only adjacent, adjacent and form a linear pair, or not adjacent.
$\angle D E C$ and $\angle A E B$

$\angle D E C$ and $\angle A E B$ share E but do not have a common side, so $\angle D E C$ and $\angle A E B$ are not adjacent angles.

1-4 Pairs of Angles

Check It Out! Example 1a

Tell whether the angles are only adjacent, adjacent and form a linear pair, or not adjacent.
 $\angle 5$ and $\angle 6$

$\angle 5$ and $\angle 6$ are adjacent angles. Their noncommon sides, $E A$ and $E D$, are opposite rays, so $\angle 5$ and $\angle 6$ also form a linear pair.

1-4 Pairs of Angles

Check It Out! Example 1b

Tell whether the angles are only adjacent, adjacent and form a linear pair, or not adjacent.
 $\angle 7$ and $\angle S P U$

$\angle 7$ and $\angle S P U$ have a common vertex, P, but do not have a common side. So $\angle 7$ and $\angle S P U$ are not adjacent angles.

1-4 Pairs of Angles

Check It Out! Example 1c

Tell whether the angles are only adjacent, adjacent and form a linear pair, or not adjacent.
 $\angle 7$ and $\angle 8$

$\angle 7$ and $\angle 8$ have a common vertex, P, but do not have a common side. So $\angle 7$ and $\angle 8$ are not adjacent angles.

1-4) Pairs of Angles

Complementary and Supplementary Ancles

Complementary angles are two angles whose measures have a sum of 90°. $\angle A$ and $\angle B$ are complementary.

Supplementary angles are two angles whose measures have a sum of 180°. $\angle A$ and $\angle C$ are supplementary.

1-4) Pairs of Angles

You can find the complement of an angle that measures x° by subtracting its measure from 90°, or $(90-x)^{\circ}$.

You can find the supplement of an angle that measures x° by subtracting its measure from 180°, or $(180-x)^{\circ}$.

1-4 Pairs of Angles

Example 2: Finding the Measures of Complements and Supplements
Find the measure of each of the following.
A. complement of $\angle F$

$$
\begin{aligned}
& (90-x)^{\circ} \\
& 90^{\circ}-59^{\circ}=31^{\circ}
\end{aligned}
$$

B. supplement of $\angle G$

$$
\begin{aligned}
& (180-x)^{\circ} \\
& \begin{aligned}
180-(7 x+10)^{\circ} & =180^{\circ}-7 x-10 \\
& =(170-7 x)^{\circ}
\end{aligned}
\end{aligned}
$$

1-4) Pairs of Angles

Check It Out! Example 2

Find the measure of each of the following.
a. complement of $\angle E$

$$
\begin{aligned}
& (90-x)^{\circ} \\
& \begin{aligned}
90^{\circ}-(7 x-12)^{\circ} & =90^{\circ}-7 x^{\circ}+12^{\circ} \\
& =(102-7 x)^{\circ}
\end{aligned}
\end{aligned}
$$

$$
(7 x-12)^{\circ}
$$

b. supplement of $\angle F$

$$
\begin{aligned}
& (180-x)^{\circ} \\
& 180^{\circ}-116.5^{\circ}=63 \frac{1}{2}^{\circ}
\end{aligned}
$$

Another angle pair relationship exists between two angles whose sides form two pairs of opposite rays. Vertical angles are two nonadjacent angles formed by two intersecting lines. $\angle 1$ and $\angle 3$ are vertical angles, as are $\angle 2$ and $\angle 4$.

1-4) Pairs of Angles

Example 5: Identifying Vertical Angles

Name the pairs of vertical angles.

$\angle H M L$ and $\angle J M K$ are vertical angles.
$\angle H M J$ and $\angle L M K$ are vertical angles.

Check

$$
\begin{aligned}
& \mathrm{m} \angle H M L \approx \mathrm{~m} \angle J M K \approx 60^{\circ} . \\
& \mathrm{m} \angle H M J \approx \mathrm{~m} \angle L M K \approx 120^{\circ} .
\end{aligned}
$$

1-4) Pairs of Angles

Check It Out! Example 5

Name a pair of vertical angles. Do they appear to have the same measure? Check by measuring with a protractor.

$\angle E D G$ and $\angle F D H$ are vertical angles and appear to have the same measure.

Check $\mathrm{m} \angle E D G \approx \mathrm{~m} \angle F D H \approx 45^{\circ}$

1-4 Pairs of Angles

Lesson Quiz: Part I

$m \angle A=64.1^{\circ}$, and $m \angle B=(4 x-30)^{\circ}$. Find the measure of each of the following.

1. supplement of $\angle A 115.9^{\circ}$
2. complement of $\angle B(120-4 x)^{\circ}$
3. Determine whether this statement is true or false. If false, explain why. If two angles are complementary and congruent, then the measure of each is 90°.

False; each is 45°.

1-4) Pairs of Angles

Lesson Quiz: Part |I

$\mathrm{m} \angle X Y Z=2 x^{\circ}$ and $m \angle P Q R=(8 x-20)^{\circ}$.
4. If $\angle X Y Z$ and $\angle P Q R$ are supplementary, find the measure of each angle. 40ㅇ 140°
5. If $\angle X Y Z$ and $\angle P Q R$ are complementary, find the measure of each angle.
22°; 68°

1-4) Pairs of Angles

HOMEWORK

page 32
 $$
\# 14-22,26-31,51-55
$$

