Bellwork Simplify each expression.

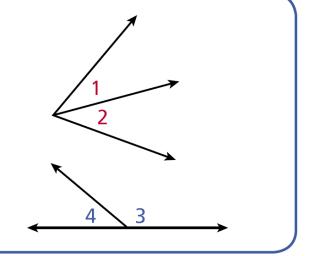
- **1.** 90 (x + 20) 70 x
- **2.** 180 (3x 10) <u>190 3x</u>

3. Ray BD bisects angle ABC, the measure of angle ABC equals 4x + 5, and the measure of angle ABD equals 3x - 1. What is the value of

х?

Objectives

Identify adjacent, vertical, complementary, and supplementary angles.

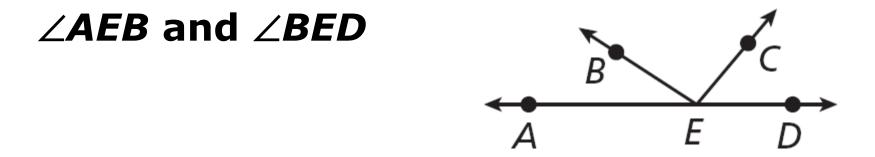

Find measures of pairs of angles.

Holt Geometry

Pairs of Angles

Adjacent angles are two angles in the same plane with a common vertex and a common side, but no common interior points. $\angle 1$ and $\angle 2$ are adjacent angles.

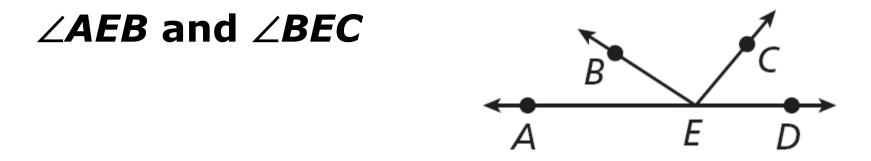
A **linear pair** of angles is a pair of adjacent angles whose noncommon sides are opposite rays. $\angle 3$ and $\angle 4$ form a linear pair.



Holt Geometry

Example 1A: Identifying Angle Pairs

Tell whether the angles are only adjacent, adjacent and form a linear pair, or not adjacent.



 $\angle AEB$ and $\angle BED$ have a common vertex, *E*, a common side, \overrightarrow{EB} , and no common interior points. Their noncommon sides, \overrightarrow{EA} and \overrightarrow{ED} , are opposite rays. Therefore, $\angle AEB$ and $\angle BED$ are adjacent angles and form a linear pair.

Example 1B: Identifying Angle Pairs

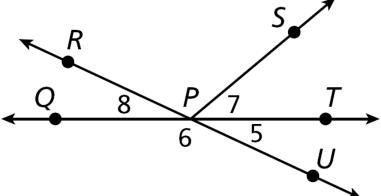
Tell whether the angles are only adjacent, adjacent and form a linear pair, or not adjacent.



 $\angle AEB$ and $\angle BEC$ have a common vertex, *E*, a common side, \overrightarrow{EB} , and no common interior points. Therefore, $\angle AEB$ and $\angle BEC$ are only adjacent angles.

Example 1C: Identifying Angle Pairs

Tell whether the angles are only adjacent, adjacent and form a linear pair, or not adjacent.

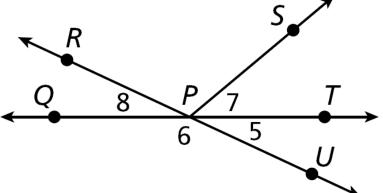


 $\angle DEC$ and $\angle AEB$ share *E* but do not have a common side, so $\angle DEC$ and $\angle AEB$ are not adjacent angles.

Check It Out! Example 1a

Tell whether the angles are only adjacent, adjacent and form a linear pair, or not adjacent.

 $\angle 5$ and $\angle 6$

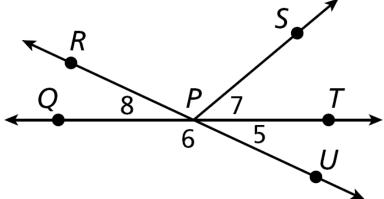


 $\angle 5$ and $\angle 6$ are adjacent angles. Their noncommon sides, *EA* and *ED*, are opposite rays, so $\angle 5$ and $\angle 6$ also form a linear pair.

Check It Out! Example 1b

Tell whether the angles are only adjacent, adjacent and form a linear pair, or not adjacent.

∠7 and ∠*SPU*

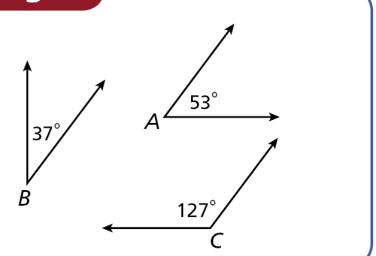


 $\angle 7$ and $\angle SPU$ have a common vertex, *P*, but do not have a common side. So $\angle 7$ and $\angle SPU$ are not adjacent angles.

Check It Out! Example 1c

Tell whether the angles are only adjacent, adjacent and form a linear pair, or not adjacent.

∠7 and ∠8



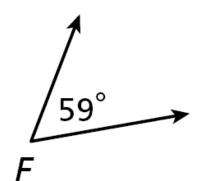
 $\angle 7$ and $\angle 8$ have a common vertex, *P*, but do not have a common side. So $\angle 7$ and $\angle 8$ are not adjacent angles.

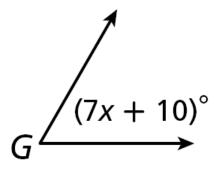
Complementary and Supplementary Angles

Complementary angles are two angles whose measures have a sum of 90°. $\angle A$ and $\angle B$ are complementary.

Supplementary angles are two angles whose measures have a sum of 180°. $\angle A$ and $\angle C$ are supplementary.

You can find the complement of an angle that measures x° by subtracting its measure from 90°, or (90 – x)°.


You can find the supplement of an angle that measures x° by subtracting its measure from 180°, or $(180 - x)^{\circ}$.


Example 2: Finding the Measures of Complements and Supplements

- Find the measure of each of the following.
- **A.** complement of $\angle F$

 $(90 - x)^{\circ}$

- $90^{\circ} 59^{\circ} = 31^{\circ}$
- B. supplement of ∠G $(180 - x)^{\circ}$ $180 - (7x+10)^{\circ} = 180^{\circ} - 7x - 10$ $= (170 - 7x)^{\circ}$

Check It Out! Example 2

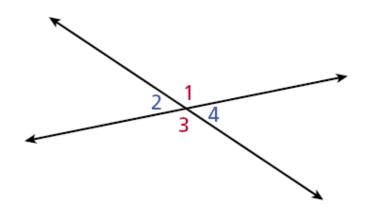
Find the measure of each of the following.

a. complement of $\angle E$

$$(90 - x)^{\circ}$$

$$90^{\circ} - (7x - 12)^{\circ} = 90^{\circ} - 7x^{\circ} + 12^{\circ}$$

$$= (102 - 7x)^{\circ} \quad (7x - 12)^{\circ} E$$


b. supplement of $\angle F$

$$(180 - x)^{\circ}$$

 $180^{\circ} - 116.5^{\circ} = 63\frac{1}{2}^{\circ}$

∖ 116.5°	
F	_

٨

Another angle pair relationship exists between two angles whose sides form two pairs of opposite rays. **Vertical angles** are two nonadjacent angles formed by two intersecting lines. $\angle 1$ and $\angle 3$ are vertical angles, as are $\angle 2$ and $\angle 4$.

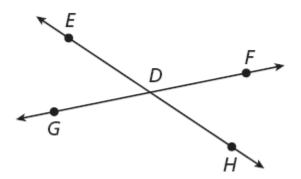
Example 5: Identifying Vertical Angles

Name the pairs of vertical angles.

 $\angle HML$ and $\angle JMK$ are vertical angles. $\angle HMJ$ and $\angle LMK$ are vertical angles.

$\begin{array}{ll} \textit{Check} & m \angle HML \approx m \angle JMK \approx 60^{\circ}. \\ & m \angle HMJ \approx m \angle LMK \approx 120^{\circ}. \end{array}$

Holt Geometry


Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

M

Check It Out! Example 5

Name a pair of vertical angles. Do they appear to have the same measure? Check by measuring with a protractor.

 $\angle EDG$ and $\angle FDH$ are vertical angles and appear to have the same measure.

Check m \angle EDG \approx m \angle FDH \approx 45°

Lesson Quiz: Part I

$m \angle A = 64.1^{\circ}$, and $m \angle B = (4x - 30)^{\circ}$. Find the measure of each of the following.

- **1.** supplement of $\angle A$ **115.9°**
- **2.** complement of $\angle B$ (120 4x) °
- **3.** Determine whether this statement is true or false. If false, explain why. *If two angles are complementary and congruent, then the measure of each is 90°.*

False; each is 45°.

Lesson Quiz: Part II

$m \angle XYZ = 2x^{\circ}$ and $m \angle PQR = (8x - 20)^{\circ}$.

- 4. If ∠XYZ and ∠PQR are supplementary, find the measure of each angle.
 40°; 140°
- 5. If ∠XYZ and ∠PQR are complementary, find the measure of each angle.
 22°; 68°

HOMEWORK

page 32

#14-22, 26 - 31, 51 - 55

Holt Geometry