

Holt Geometry

There is no Bellwork for today.

Please have your notebook out, learning journal out, and your assignment ready to check.

Holt Geometry

Bellwork – Block 3

1) Suppose S is between R and T. Use the Segment Addition postulate to solve for x.
RS = 2x + 6, ST = 4x - 3, RT = 5x + 12

2) B is the midpoint of segment AC, AB = 5x, BC = 3x + 4. Find AB, BC, and AC.

Name and classify angles.

Measure and construct angles and angle bisectors.

An **angle** is a figure formed by two rays, or sides, with a common endpoint called the **vertex** (plural: *vertices*).

Angle Name $\angle R$, $\angle SRT$, $\angle TRS$, or $\angle 1$

Holt Geometry

Example 1: Naming Angles

A surveyor recorded the angles formed by a transit (point A) and three distant points, B, C, and D. Name three of the angles.

Possible answer:

∠BAC

 $\angle CAD$

∠BAD

Check It Out! Example 1

Write the different ways you can name the angles in the diagram.

 $\angle RTQ$, $\angle T$, $\angle STR$, $\angle 1$, $\angle 2$

Holt Geometry

The **measure** of an angle is how wide it opens. It is measured in degrees.

Since there are 360° in a circle, one <u>degree</u> is $\frac{1}{360}$ of a circle.

Holt Geometry

If \overrightarrow{OC} corresponds with cand \overrightarrow{OD} corresponds with d, $m\angle DOC = |d - c|$ or |c - d|.

Holt Geometry

Example 2: Measuring and Classifying Angles

Find the measure of each angle. Then classify each as acute, right, or obtuse.

A.∠WXV

 $m \angle WXV = 30^{\circ}$

 $\angle WXV$ is acute.

B. ∠*ZXW*

 $m \angle ZXW = |130^{\circ} - 30^{\circ}| = 100^{\circ}$

 $\angle ZXW =$ is obtuse.

Check It Out! Example 2

Use the diagram to find the measure of each angle. Then classify each as acute, right, or obtuse.

a.∠BOA $m \angle BOA = 40^{\circ}$ $\angle BOA$ is acute. **b.** *∠DOB* $m \angle DOB = 125^{\circ}$ $\angle DOB$ is obtuse. **c.** */EOC* $m \angle EOC = 105^{\circ}$ */EOC* is obtuse.

Congruent angles are angles that have the same measure.

In the diagram, $m \angle ABC = m \angle DEF$, so you can write $\angle ABC \cong \angle DEF$. This is read as "angle ABC is congruent to angle *DEF*." *Arc marks* are used to show that the two angles are congruent.

Holt Geometry

Example 3: Using the Angle Addition Postulate

 $m \angle DEG = 115^{\circ}$, and $m \angle DEF = 48^{\circ}$. Find $m \angle FEG$

 $m \angle DEG = m \angle DEF + m \angle FEG \angle Add. Post.$

 $115^{\circ} = 48^{\circ} + m\angle FEG$ -48° -48° 67° = m∠FEG Substitute the given values. Subtract 48 from both sides. Simplify.

Check It Out! Example 3

Y is in the interior of angle XWZ. $m\angle XWZ = 121^{\circ}$ and $m\angle XWY = 59^{\circ}$. Find $m\angle YWZ$.

 $m \angle YWZ = m \angle XWZ - m \angle XWY \angle Add.$ Post.

 $m \angle YWZ = 121^{\circ} - 59^{\circ}$ Substitute the given values.

m∠*YWZ* = 62°

Subtract.

An **angle bisector** is a ray that divides an angle into two congruent angles.

 \overrightarrow{JK} bisects $\angle LJM$; thus $\angle LJK \cong \angle KJM$.

Example 4: Finding the Measure of an Angle

KM bisects $\angle JKL$, m $\angle JKM = (4x + 6)^{\circ}$, and m $\angle MKL = (7x - 12)^{\circ}$. Find m $\angle JKM$.

Holt Geometry

Example 4 Continued

Step 1 Find *x*.

 $m \angle JKM = m \angle MKL$

(4 <i>x</i>	+ (<mark>6)</mark> °	=	(7 <i>x</i>	- 1	12)	0

+12 +12 +124x + 18 = 7x

 $\begin{array}{rrr} -4x & -4x \\ 18 &= 3x \\ 6 &= x \end{array}$

Def. of \angle bisector

Substitute the given values. Add 12 to both sides. Simplify. Subtract 4x from both sides. Divide both sides by 3. Simplify.

Example 4 Continued

Step 2Find m $\angle JKM$. $m \angle JKM = 4x + 6$ = 4(6) + 6 $= 30^{\circ}$ Simplify.

Holt Geometry

Check It Out! Example 4a

Find the measure of each angle. \overrightarrow{QS} bisects $\angle PQR$, m $\angle PQS = (5y - 1)^\circ$, and m $\angle PQR = (8y + 12)^\circ$. Find m $\angle PQS$.

Step 1 Find *y*. $\angle PQS = \frac{1}{2} \angle PQR$ Def. of \angle bisector $(5y-1)^{\circ} = \frac{1}{2}(8y+12)^{\circ}$ Substitute the given values. 5y - 1 = 4y + 6Simplify. y - 1 = 6Subtract 4y from both sides. v = 7Add 1 to both sides.

Holt Geometry

Check It Out! Example 4a Continued

Step 2Find $m \angle PQS$. $m \angle PQS = 5y - 1$ = 5(7) - 1Substitute 7 for y. $= 34^{\circ}$ Simplify.

Holt Geometry

Check It Out! Example 4b

Find the measure of each angle.

 \overrightarrow{JK} bisects $\angle LJM$, m $\angle LJK = (-10x + 3)^\circ$, and m $\angle KJM = (-x + 21)^\circ$. Find m $\angle LJM$.

Step 1 Find *x*. $/I \, 1K = /K 1M$ $(-10x + 3)^{\circ} = (-x + 21)^{\circ}$ +X+X-9x + 3 = 21-3 -3 -9x = 18x = -2

Def. of ∠ bisector Substitute the given values. Add x to both sides. Simplify. Subtract 3 from both sides. Divide both sides by -9. Simplify.

Holt Geometry

Check It Out! Example 4b Continued

Step 2 Find m∠LJM.

 $m \angle LJM = m \angle LJK + m \angle KJM$

$$= (-10x + 3)^{\circ} + (-x + 21)^{\circ}$$

= -10(-2) + 3 - (-2) + 21 Substitute -2 for x.
= 20 + 3 + 2 + 21 Simplify.
= 46^{\circ}

Lesson Quiz: Part I

Classify each angle as acute, right, or obtuse.

- **1.** $\angle XTS$ acute
- **2.** ∠WTU right

- **3.** *K* is in the interior of $\angle LMN$, m $\angle LMK = 52^{\circ}$, and m $\angle KMN = 12^{\circ}$. Find m $\angle LMN$.
 - 64°

Lesson Quiz: Part II

- **4.** \overrightarrow{BD} bisects $\angle ABC$, m $\angle ABD = \left(\frac{1}{2}y + 10\right)^\circ$, and m $\angle DBC = (y + 4)^\circ$. Find m $\angle ABC$.
- Use a protractor to draw an angle with a measure of 165°.

Holt Geometry

Lesson Quiz: Part III

6. $m \angle WYZ = (2x - 5)^{\circ}$ and $m \angle XYW = (3x + 10)^{\circ}$. Find the value of *x*.

