Measuring and Constructing Segments

Warm Up Simplify.

1. $7-(-3) 10$
2. $-1-(-13) 12$
3. |-7-1| 8

Solve each equation.
4. $2 x+3=9 x-11$
5. $3 x=4 x-5$
2
5

1-2 Measuring and Constructing Segments

Objectives

Use length and midpoint of a segment. Construct midpoints and congruent segments.

1-2 Measuring and Constructing Segments

The distance (or length) between any two points is the absolute value of the difference of the coordinates.

$$
A B=|a-b| \text { or }|b-a|
$$

1-2 Measuring and Constructing Segments

Example 1: Finding the Length of a Segment

Find each length.

A. $B C$

$$
\begin{aligned}
B C & =|1-3| \\
& =|1-3| \\
& =2
\end{aligned}
$$

$$
\begin{aligned}
A C & =|-2-3| \\
& =|-5| \\
& =5
\end{aligned}
$$

1-2 Measuring and Constructing Segments

Check It Out! Example 1

Find each length.

a. $X Y$

$$
X Y=\left|1 \frac{1}{2}-5\right|
$$

b. $X Z$

$$
\begin{aligned}
& =\left|-3 \frac{1}{2}\right| \\
& =3 \frac{1}{2}
\end{aligned}
$$

$1 \frac{1}{2}$

$$
\begin{aligned}
X Z & =\left|1 \frac{1}{2}-(-3)\right| \\
& =\left|4 \frac{1}{2}\right| \\
& =4 \frac{1}{2}
\end{aligned}
$$

1-2 Measuring and Constructing Segments

Congruent segments are segments that have the same length.

In the diagram, $P Q=R S$, so you can write $\overline{P Q} \cong$ $\overline{R S}$. This is read as "segment $P Q$ is congruent to segment RS." Tick marks are used in a figure to show congruent segments.

1-2 Measuring and Constructing Segments

In order for you to say that a point B is between two points A and C, all three points must lie on the same line, and $A B+B C=A C$.

Postulate 1-2-2 Segment Addition Postulate

If B is between A and C, then $A B+B C=A C$.

1-2 Measuring and Constructing Segments

Example 3A: Using the Segment Addition Postulate

G is between F and $H, F G=6$, and $F H=11$.

 Find $\boldsymbol{G H}$.$$
F H=F G+G H \quad \text { Seg. Add. Postulate }
$$

$$
\begin{array}{lll}
11=6+G H & \text { Substitut } \\
\frac{-6}{5}=\frac{-6}{}=G H & & \text { Subtract } \\
\text { Simplify } .
\end{array}
$$

1-2 Measuring and Constructing Segments

Example 3B: Using the Segment Addition Postulate
M is between N and O. Find NO.

$$
\begin{aligned}
& N M+M O=N O \\
& 17+(3 x-5)=5 x+2 \\
& -2-2 \\
& 3 x+10=5 x \\
& \frac{-3 x}{\frac{10}{2}}=\frac{-3 x}{\frac{2 x}{2}} \\
& 5=x
\end{aligned}
$$

Seg. Add. Postulate
Substitute the given values

Subtract 2 from both sides.
Simplify.
Subtract 3x from both sides.
Divide both sides by 2.

1-2 Measuring and Constructing Segments

Example 3B Continued

M is between N and O. Find NO.

$$
\begin{aligned}
N O & =5 x+2 & & \\
& =5(5)+2 & & \text { Substitute } 5 \text { for } x . \\
& =27 & & \text { Simplify. }
\end{aligned}
$$

1-2 Measuring and Constructing Segments

Check It Out! Example 3a

Y is between X and $Z, X Z=3$, and $X Y=1 \frac{1}{3}$. Find YZ.

$$
\begin{aligned}
& X Z=X Y+Y Z \text { Seg. Add. Postulate } \\
& 3=1 \frac{1}{3}+Y Z \text { Substitute the given values. } \\
& \frac{-1 \frac{1}{3}-1 \frac{1}{3}}{1 \frac{2}{3}=Y Z} \text { Subtract } 1 \frac{1}{3} \text { from both side } \\
& \hline
\end{aligned}
$$

1-2 Measuring and Constructing Segments

Check It Out! Example 3b

\boldsymbol{E} is between \boldsymbol{D} and \boldsymbol{F}. Find $\boldsymbol{D F}$. $\underset{\sim}{\square} 3 x-1 \underset{\sim}{E}$

$$
\begin{aligned}
& D E+E F=D F \\
& (3 x-1)+13=6 x \\
& 3 x+12=6 x \\
& \frac{-3 x}{12}=\frac{-3 x}{=3 x} \\
& \frac{12}{3}=\frac{3 x}{3} \\
& 4=x
\end{aligned}
$$

Seg. Add. Postulate
Substitute the given values

Subtract 3x from both sides.
Simplify.
Divide both sides by 3.

1-2 Measuring and Constructing Segments

Check It Out! Example 3b Continued

$$
\begin{aligned}
D F & =6 x \\
& =6(4) \\
& =24
\end{aligned}
$$

Substitute 4 for x.
Simplify.

1-2 Measuring and Constructing Segments

The midpoint is a point in the exact middle of a segment

Bisect - to cut the segment into two congruent segments.

If M is the midpoint of $A B$, then $A M=M B$.
So if $A B=6$, then $A M=3$ and $M B=3$.

1-2 Measuring and Constructing Segments

Example 4: Recreation Application

The map shows the route for a race. You are at $X, 6000$ ft from the first checkpoint C. The second checkpoint D is located at the midpoint between C and the end of the race Y. The total race is $\mathbf{3}$ miles. How far apart are the 2 checkpoints?

$$
\begin{aligned}
X Y & =3(5280 \mathrm{ft}) \quad \text { Convert race distance to feet. } \\
& =15,840 \mathrm{ft}
\end{aligned}
$$

1-2 Measuring and Constructing Segments

Example 4 Continued

$$
X C+C Y=X Y \quad \text { Seg. Add. Post. }
$$

$6000+C Y=15,840$ Substitute 6000 for $X C$ and 15,840
$-6000 \quad-6000$ Subtract 6000 from both sides.

$$
\begin{aligned}
C Y & =9840 \quad \text { Simplify. } \\
C D & =\frac{1}{2}(9840) D \text { is the mdpt. of } \overline{C Y}, \text { so } C D=\frac{1}{2} C Y . \\
& =4920 \mathrm{ft}
\end{aligned}
$$

The checkpoints are 4920 ft apart.

1-2 Measuring and Constructing Segments

Check It Out! Example 4

You are 1182.5 m from the first-aid station. What is the distance to a drink station located at the midpoint between your current location and the first-aid station?

The distance $X Y$ is $\mathbf{1 1 8 2 . 5} \mathbf{~ m}$. The midpoint would be

$$
\frac{1182.5}{2}=591.25 \mathrm{~m} .
$$

1-2 Measuring and Constructing Segments

Example 5: Using Midpoints to Find Lengths

D is the midpoint of $\overline{E F}, E D=4 x+6$, and $D F=7 x-9$. Find $E D, D F$, and $E F$.
$E \quad 4 x+6$
Solve for x.

$$
E D=D F \quad D \text { is the mdpt. of } \overline{E F} .
$$

$4 x+6=7 x-9$ Substitute $4 x+6$ for $E D$ and $7 x-9$ for $D F$.
$-4 x-4 x \quad$ Subtract $4 x$ from both sides.
$6=3 x-9$ Simplify.
$+9 \quad+9$ Add 9 to both sides.

$$
15=3 x \quad \text { Simplify } .
$$

1-2 Measuring and Constructing Segments

Example 5 Continued

D is the midpoint of $\overline{E F}, E D=4 x+6$, and $D F=7 x-9$. Find $E D, D F$, and $E F$.

$$
\begin{aligned}
& \frac{15}{3}=\frac{3 x}{3} \\
& x=5 \text { Divide both sides by } 3 . \\
& \text { Simplify. }
\end{aligned}
$$

1-2 Measuring and Constructing Segments

Example 5 Continued

D is the midpoint of $\overline{E F}, E D=4 x+6$, and $D F=7 x-9$. Find $E D, D F$, and $E F$.

$$
\begin{array}{rlrl}
E D & =4 x+6 & D F & =7 x-9 \\
& =4(5)+6 & & =7(5)-9
\end{array}
$$

1-2 Measuring and Constructing Segments

Check It Out! Example 5

S is the midpoint of $R T, R S=-2 x$, and $S T=-3 x-2$. Find $R S, S T$, and $R T$.

Step 1 Solve for x.

$$
\begin{array}{ll}
R S=S T & \text { S is the mdpt. of } \overline{R T} . \\
-2 x=-3 x-2 & \text { Substitute }-2 x \text { for } R S \text { and }-3 x-2 \text { for } S T . \\
+3 x & +3 x \\
+3 & \text { Add } 3 x \text { to both sides. } \\
\text { Simplify. }
\end{array}
$$

1-2 Measuring and Constructing Segments

Check It Out! Example 5 Continued

S is the midpoint of $R T, R S=-2 x$, and $S T=-3 x-2$. Find $R S, S T$, and $R T$.

Step 2 Find $R S, S T$, and $R T$.

$$
\begin{aligned}
& R S=-2 x \\
& S T=-3 x-2 \\
& R T=R S+S T \\
& =-2(-2) \\
& =-3(-2)-2 \\
& =4+4 \\
& =4 \\
& =4 \\
& =8
\end{aligned}
$$

1-2 Measuring and Constructing Segments

Lesson Quiz: Part I

1. M is between N and $O . M O=15$, and $M N=7.6$. Find $N O$.
22.6
2. S is the midpoint of $\overline{T V}, T S=4 x-7$, and $S V=5 x-15$. Find $T S, S V$, and $T V$. 25, 25, 50
3. Sketch, draw, and construct a segment congruent to $\overline{C D}$.

Check students' constructions

1-2 Measuring and Constructing Segments

Lesson Quiz: Part II

4. $\overline{L H}$ bisects $\overline{G K}$ at $M . G M=2 x+6$, and $G K=24$. Find x. 3

5. Tell whether the statement below is sometimes, always, or never true. Support your answer with a sketch.
If M is the midpoint of $K L$, then M, K, and L are collinear. Always

1-2 Measuring and Constructing Segments

Homework

- Page 17
-\#11, 12, 15, 17-28, 32

