## Bellwork

1. 3(x-6) = -12

# 2. 3x + 5x + 12 = 4x + 30

**Holt Geometry** 

**Objectives** 

Identify, name, and draw points, lines, segments, rays, and planes.

Apply basic facts about points, lines, and planes.

#### **Undefined Terms**

| TERM                                                                               | NAME                                                                                                    | DIAGRAM                                                                         |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| A <b>point</b> names a location<br>and has no size. It is<br>represented by a dot. | A capital letter<br>point <mark>P</mark>                                                                | Ρ.                                                                              |
| A <b>line</b> is a straight path<br>that has no thickness and<br>extends forever.  | A lowercase letter or two points on the line line $\ell$ , $\overleftarrow{XY}$ or $\overleftarrow{YX}$ | $\begin{array}{c} & & \\ X & & \\ X & Y \end{array} \ell$                       |
| A <b>plane</b> is a flat surface<br>that has no thickness and<br>extends forever.  | A script capital letter<br>or three points not<br>on a line<br>plane <del>R</del> or plane <b>ABC</b>   | $\begin{array}{c} A \bullet & C \bullet \\ \mathcal{R} & B \bullet \end{array}$ |



<u>Collinear Points</u> - Points that lie on the same line. <u>Coplanar Points</u> – Points that lie on the same plane.

### Which points below are collinear?



**Holt Geometry** 

#### **Example 1: Naming Points, Lines, and Planes**



### A. Name four coplanar points.

A, B, C, D

#### **B. Name three lines.**

Possible answer: AE, BE, CE

**Holt Geometry** 



#### **Check It Out! Example 1**

#### Use the diagram to name two planes.



Possible answer:

Plane *R* and plane *ABC*.

| Segments and Rays                                                                                                        |                                                                                                           |                         |  |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------|--|
| DEFINITION                                                                                                               | NAME                                                                                                      | DIAGRAM                 |  |
| A <b>segment</b> , or line segment,<br>is the part of a line consisting<br>of two points and all points<br>between them. | The two endpoints<br>AB or BA                                                                             | A B                     |  |
| An <b>endpoint</b> is a point at<br>one end of a segment or the<br>starting point of a <i>ray.</i>                       | A capital letter<br>C and D                                                                               | C D                     |  |
| A <b>ray</b> is a part of a line<br>that starts at an endpoint<br>and extends forever in one<br>direction.               | Its endpoint and any other point on the ray <b>RS</b>                                                     | R $S$ $R$               |  |
| Opposite rays are two<br>rays that have a common<br>endpoint and form a line.                                            | The common endpoint and<br>any other point on each ray<br>$\overrightarrow{EF}$ and $\overrightarrow{EG}$ | $\overleftarrow{F E G}$ |  |

#### **Holt Geometry**



#### **Example 2: Drawing Segments and Rays**

### Draw and label each of the following.

A. a segment with endpoints *M* and *N*.



**B.** opposite rays with a common endpoint *T*.





#### Check It Out! Example 2

# Draw and label a ray with endpoint *M* that contains *N*.



**Holt Geometry** 



A **postulate**, or *axiom*, is a statement that is accepted as true without proof. Postulates about points, lines, and planes help describe geometric properties.





#### **Example 3: Identifying Points and Lines in a Plane**

#### Name a line that passes through two points.







#### **Check It Out! Example 3**

# Name a plane that contains three noncollinear points.



Possible answer: plane GHF

**Holt Geometry** 

Recall that a system of equations is a set of two or more equations containing two or more of the same variables. The coordinates of the solution of the system satisfy all equations in the system. These coordinates also locate the point where all the graphs of the equations in the system *intersect*.

An intersection is the set of all points that two or more figures have in common. The next two postulates describe intersections involving lines and planes.

## In Class:

## Page 9 # 1 – 10

**Holt Geometry**