4-8 Isosceles and Equilateral Triangles

Bellwork

1.

2.

4-8 Isosceles and Equilateral Triangles

Objectives

Properties of isosceles and equilateral triangles.

4-8 Isosceles and Equilateral Triangles

Recall that an isosceles triangle has at least two congruent sides. The congruent sides are called the legs. The vertex angle is the angle formed by the legs. The side opposite the vertex angle is called the base, and the base angles are the two angles that have the base as a side.
$\angle 3$ is the vertex angle.
$\angle 1$ and $\angle 2$ are the base angles.

4-8 Isosceles and Equilateral Triangles

THEOREM		HYPOTHESIS	CONCLUSION
4-8-1	Isosceles Triangle Theorem If two sides of a triangle are congruent, then the angles opposite the sides are congruent.		$\angle B \cong \angle C$
$4-8-2$	Converse of Isosceles Triangle Theorem If two angles of a triangle are congruent, then the sides opposite those angles are congruent.		$\overline{D E} \cong \overline{D F}$

4-8 Isosceles and Equilateral Triangles

Reading Math
The Isosceles Triangle Theorem is sometimes stated as "Base angles of an isosceles triangle are congruent."

4-8 Isosceles and Equilateral Triangles

Example 2A: Finding the Measure of an Angle

Find $m \angle F$.

$$
\mathrm{m} \angle F=\mathrm{m} \angle D=x^{\circ} \quad \text { Isosc. } \triangle \text { Thm. }
$$

E
$\mathrm{m} \angle F+\mathrm{m} \angle D+\mathrm{m} \angle A=180 \triangle$ Sum Thm.

$$
x+x+22=180 \begin{aligned}
& \text { Substitute the } \\
& \text { given values }
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Simplify and subtract } \\
22 \text { from both sides }
\end{array}
$$

$$
\begin{array}{ll}
x=79^{\circ} & \text { Divide both } \\
\text { sides by } 2 .
\end{array}
$$

Thus $\mathrm{m} \angle F=79^{\circ}$

4-8 Isosceles and Equilateral Triangles

Example 2B: Finding the Measure of an Angle

Find $\mathbf{m} \angle \boldsymbol{G}$.

$$
\mathrm{m} \angle \mathrm{~J}=\mathrm{m} \angle \mathrm{G} \text { Isosc. } \triangle \text { Thm. }
$$

$$
\begin{array}{ll}
x=22^{\circ} & \begin{array}{l}
\text { Divide both } \\
\text { sides by } 2 .
\end{array}
\end{array}
$$

Thus $\mathrm{m} \angle \mathrm{G}=22^{\circ}+44^{\circ}=66^{\circ}$.

4-8 Isosceles and Equilateral Triangles

Check It Out! Example 2A

Find $\mathbf{m} \angle \mathbf{H}$.

$$
\mathrm{m} \angle H=\mathrm{m} \angle G=x^{\circ} \quad \text { Isosc. } \triangle \text { Thm. }
$$

$$
\mathrm{m} \angle H+\mathrm{m} \angle G+\mathrm{m} \angle F=180 \triangle \text { Sum Thm. }
$$

$$
x+x+48=180 \begin{aligned}
& \text { Substitute the } \\
& \text { given values }
\end{aligned}
$$

$$
2 x=13248 \text { from both sides. }
$$

$$
x=66^{\circ} \text { Divide both }
$$

$$
\text { sides by } 2 .
$$

Thus $\mathrm{m} \angle H=66^{\circ}$

4-8 Isosceles and Equilateral Triangles

Check It Out! Example 2B

Find $\mathbf{m} \angle \mathbf{N}$.

$$
\mathrm{m} \angle P=\mathrm{m} \angle N \text { Isosc. } \triangle \text { Thm. }
$$

Thus $\mathrm{m} \angle N=6(8)=48^{\circ}$.

4-8 Isosceles and Equilateral Triangles

Corollary 4-8-3 Equilateral Triangle

COROLLARY
 HYPOTHESIS
 CONCLUSION

 $\angle A \cong \angle B \cong \angle C$
 (equilateral $\triangle \rightarrow$ equiangular \triangle)

Corollary 4-8-4 Equiangular Triangle

If a triangle is equiangular, then it is equilateral.
(equiangular $\Delta \rightarrow$ equilateral \triangle)

HYPOTHESIS
 CONCLUSION

$\overline{D E} \cong \overline{D F} \cong \overline{E F}$

4-8 Isosceles and Equilateral Triangles

Example 3A: Using Properties of Equilateral Triangles

Find the value of x.
$\triangle L K M$ is equilateral.
Equilateral $\Delta \rightarrow$ equiangular Δ

$$
\begin{array}{rll}
(2 x+32)^{\circ} & =60^{\circ} & \begin{array}{l}
\text { The measure of each } \angle \text { of an } \\
\text { equiangular } \Delta \text { is } 60^{\circ} .
\end{array} \\
2 x & =28 & \text { Subtract } 32 \text { both sides. } \\
x & =14 & \text { Divide both sides by } 2 .
\end{array}
$$

4-8 Isosceles and Equilateral Triangles

Example 3B: Using Properties of Equilateral Triangles

Find the value of \boldsymbol{y}.
$\triangle N P O$ is equiangular.
Equiangular $\Delta \rightarrow$ equilateral Δ

$$
5 y-6=4 y+12 \quad \begin{aligned}
& \text { Definition of } \\
& \text { equilateral }
\end{aligned}
$$

$$
y=18
$$

Subtract $4 y$ and add 6 to both sides.

4-8 Isosceles and Equilateral Triangles

Check It Out! Example 3

Find the value of JL.
$\triangle J K L$ is equiangular.
Equiangular $\Delta \rightarrow$ equilateral Δ

$$
4 t-8=2 t+1 \quad \begin{aligned}
& \text { Definition of } \\
& \text { equilateral } \Delta .
\end{aligned}
$$

$$
2 t=9
$$
 Subtract $4 y$ and add 6 to both sides.

$t=4.5 \quad$ Divide both sides by 2.
Thus $J L=2(4.5)+1=10$.

4-8 Isosceles and Equilateral Triangles

Lesson Quiz: Part I

Find each angle measure.

1. $\mathrm{m} \angle R$
2. $\mathrm{m} \angle P$ 124°

Find each value.
3. x

4. y

5. x

4-8 Isosceles and Equilateral Triangles

Lesson Quiz: Part II

6. The vertex angle of an isosceles triangle measures $(a+15)^{\circ}$, and one of the base angles measures $7 a^{\circ}$. Find a and each angle measure.
$a=11 ; 26^{\circ} ; 77^{\circ} ; 77^{\circ}$

4-8 Isosceles and Equilateral Triangles

HOMEWORK

- Page 276 \#3-10, 28, 29, 33, 34

