

Holt Geometry

Properties of isosceles and equilateral triangles.

Holt Geometry

Recall that an isosceles triangle has at least two congruent sides. The congruent sides are called the **legs**. The **vertex angle** is the angle formed by the legs. The side opposite the vertex angle is called the **base**, and the **base angles** are the two angles that have the base as a side.

 $\angle 3$ is the vertex angle.

 $\angle 1$ and $\angle 2$ are the base angles.

7	Theorems Isosceles Triangle						
	THEOREM		HYPOTHESIS	CONCLUSION			
	4-8-1	Isosceles Triangle Theorem If two sides of a triangle are congruent, then the angles opposite the sides are congruent.	B C	∠ B ≅ ∠ C			
	4-8-2	Converse of Isosceles Triangle Theorem If two angles of a triangle are congruent, then the sides opposite those angles are congruent.		DE ≅ DF			

Holt Geometry

Reading Math

The Isosceles Triangle Theorem is sometimes stated as "Base angles of an isosceles triangle are congruent."

Example 2A: Finding the Measure of an Angle

Find m $\angle F$. $m \angle F = m \angle D = x^{\circ}$ Isosc. \triangle Thm. Ε $m \angle F + m \angle D + m \angle A = 180 \ \Delta Sum Thm.$ x + x + 22 = 180 Substitute the given values. 2x = 158 Simplify and subtract 22 from both sides. $x = 79^{\circ}$ Divide both sides by 2.

Thus m $\angle F = 79^{\circ}$

Holt Geometry

Example 2B: Finding the Measure of an Angle

Find m∠*G*.

 $m \angle J = m \angle G$ Isosc. \triangle Thm.

Substitute the given values. Simplify x from both sides. Divide both sides by 2.

Thus $m \angle G = 22^{\circ} + 44^{\circ} = 66^{\circ}$.

Check It Out! Example 2A

Holt Geometry

Check It Out! Example 2B

Find m $\angle N$.

 $m \angle P = m \angle N$ Isosc. \triangle Thm.

Substitute the given values. Subtract 6y and sides. Divide both sides by 2.

Thus $m \angle N = 6(8) = 48^{\circ}$.

Ca	Corollary 4-8-3 Equilateral Triangle					
	CORO	LLARY	HYPOTHESIS	CONCLUSION		
	If a triangle is equila equiangular. (equilateral △ – 《	ateral, then it is → equiangular △)	B	∠ A ≅ ∠ B ≅ ∠C		

4	Corollary 4-8-4 Equiangular Triangle						
	CORO	LLARY	HYPOTHESIS	CONCLUSION			
	If a triangle is equiangular, then it is equilateral. $(equiangular \bigtriangleup \rightarrow equilateral \bigtriangleup)$			$\overline{DE} \cong \overline{DF} \cong \overline{EF}$			

4-8 Isosceles and Equilateral Triangles Example 3A: Using Properties of Equilateral Triangles

Find the value of x.

 ΔLKM is equilateral.

Equilateral $\Delta \rightarrow$ equiangular Δ

- $(2x + 32)^{\circ} = 60^{\circ}$
- The measure of each \angle of an equiangular Δ is 60°.
- 2x = 28 Subtract 32 both sides.
 - x = 14 Divide both sides by 2.

4-8 Isosceles and Equilateral Triangles Example 3B: Using Properties of Equilateral Triangles

Find the value of y.

 ΔNPO is equiangular.

Equiangular $\Delta \rightarrow$ equilateral Δ

$$5y - 6$$

$$4y + 12$$

$$N - P$$

$$5y-6=4y+12$$

Definition of equilateral Δ .

y = 18

Subtract 4y and add 6 to both sides.

Check It Out! Example 3

Find the value of JL.

 ΔJKL is equiangular.

Equiangular $\Delta \rightarrow$ equilateral Δ

4t - 8 = 2t + 1

Definition of equilateral Δ.

2t = 9

Subtract 4y and add 6 to both sides.

t = 4.5 Divide both sides by 2.

Thus JL = 2(4.5) + 1 = 10.

Holt Geometry

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

2t +

Lesson Quiz: Part I

Find each angle measure.

- **1.** m∠*R* 28°
- **2.** m∠*P* 124°

Find each value.

Holt Geometry

Lesson Quiz: Part II

6. The vertex angle of an isosceles triangle measures (a + 15)°, and one of the base angles measures 7a°. Find a and each angle measure.

a = 11; 26°; 77°; 77°

Holt Geometry

HOMEWORK

• Page 276 #3-10, 28, 29, 33, 34

Holt Geometry