4-5 Triangle Congruence: ASA, AAS, and HL

Warm Up

1. What are sides $A C$ and $B C$ called? Side $A B$?
legs; hypotenuse

2. Which side is in between $\angle A$ and $\angle C$?
$A C$
3. Given $\triangle D E F$ and $\triangle G H I$, if $\angle D \cong \angle G$ and $\angle E \cong \angle H$, why is $\angle F \cong \angle I$? Third $\angle \mathrm{s}$ Thm.

4-5 Triangle Gongruence: ASA, AAS, and HL

Objectives

Prove triangles congruent by using ASA, AAS, and HL.

4-5 Triangle Congruence: ASA, AAS, and HL

Side-Side-Side Triangle Congruence

 (SSS): If all pairs of corresponding sides between two triangles are congruent, then the triangles are congruent.

CONCLUSION
$\triangle A B C \cong \triangle F D E$
by SSS

4-5 Triangle Congruence: ASA, AAS, and HL

Postulate 4-4-2 Side-Angle-Side (SAS) Congruence

POSTULATE	HYPOTHESIS	CONCLUSION
If two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then the triangles are congruent.	B	

(4-5) Triangle Congruence: ASA, AAS, and HL

An included side is the common side of two consecutive angles in a polygon. The following postulate uses the idea of an included side.

$\overline{P Q}$ is the included side of $\angle P$ and $\angle Q$.

4-5 Triangle Congruence: ASA, AAS, and HL

Postulate 4-5-1 Angle-Side-Angle (ASA) Congruence

| POSTULATE | HYPOTHESIS | CONCLUSION |
| :--- | :--- | :--- | :--- |
| If two angles and the included
 side of one triangle are
 congruent to two angles and
 the included side of another
 triangle, then the triangles
 are congruent. | | |

Example 2: Applying ASA Congruence

Determine if you can use ASA to prove the triangles congruent. Explain.

Two congruent angle pairs are give, but the included sides are not given as congruent. Therefore ASA cannot be used to prove the triangles congruent.

4-5 Triangle Congruence: ASA, AAS, and HL

Check It Out! Example 2

> Determine if you can use ASA to prove $\Delta N K L \cong \Delta L M N$. Explain.

By the Alternate Interior Angles Theorem. $\angle K L N \cong \angle M N L$. $\overline{N L} \cong \overline{L N}$ by the Reflexive Property. No other congruence relationships can be determined, so ASA cannot be applied.

4-5 Triangle Congruence: ASA, AAS, and HL

4-5 Triangle Congruence: ASA, AAS, and HL

Theorem 4-5-2 Angle-Angle-Side (AAS) Congruence

| THEOREM | HYPOTHESIS | CONCLUSION |
| :--- | :--- | :--- | :--- |
| If two angles and a nonincluded
 side of one triangle are
 congruent to the corresponding | | |
| angles and nonincluded side | | |
| of another triangle, then the | | |
| triangles are congruent. | | |

(4-5) Triangle Congruence: ASA, AAS, and HL

Example 3: Using AAS to Prove Triangles Congruent

Use AAS to prove the triangles congruent.
Given: $\angle X \cong \angle V, \angle Y Z W \cong \angle Y W Z, \overline{X Y} \cong \overline{V Y}$
Prove: $\triangle X Y Z \cong \triangle V Y W$

4-5 Triangle Congruence: ASA, AAS, and HL

Check It Out! Example 3

Use AAS to prove the triangles congruent.
Given: $\overline{J L}$ bisects $\angle K L M, \angle K \cong \angle M$
Prove: $\triangle J K L \cong \triangle J M L$

4-5 Triangle Congruence: ASA, AAS, and HL

Theorem 4-5-3

Hypotenuse-Leg (HL) Congruence

THEOREM	HYPOTHESIS	CONCLUSION
If the hypotenuse and a leg of a right triangle are congruent to the hypotenuse and a leg of another right triangle, then the triangles are congruent.		

Only works with Right Triangles!!!

4-5 Triangle Congruence: ASA, AAS, and HL

Example 4A: Applying HL Congruence

Determine if you can use the HL Congruence Theorem to prove the triangles congruent. If not, tell what else you need to know.

According to the diagram,
 the triangles are right triangles that share one leg.
It is given that the hypotenuses are
congruent, therefore the triangles are congruent by HL.

4-5 Triangle Congruence: ASA, AAS, and HL

Example 4B: Applying HL Congruence

This conclusion cannot be proved by HL. According to the diagram, the triangles are right triangles and one pair of legs is congruent. You do not know that one hypotenuse is congruent to the other.

4-5 Triangle Congruence: ASA, AAS, and HL

Check It Out! Example 4

Determine if you can use the HL Congruence Theorem to prove $\triangle A B C \cong \triangle D C B$. If not, tell what else you need to know.

Yes; it is given that $\overline{A C} \cong \overline{D B} . \quad \overline{B C} \cong \overline{C B}$ by the Reflexive Property of Congruence. Since $\angle A B C$ and $\angle D C B$ are right angles, $\triangle A B C$ and $\triangle D C B$ are right triangles. $\triangle A B C \cong D C B$ by $H L$.

4-5 Triangle Congruence: ASA, AAS, and HL
Lesson Quiz: Part I
Identify the postulate or theorem that proves the triangles congruent.
1.

3.

4-5 Triangle Congruence: ASA, AAS, and HL

Lesson Quiz: Part II

4. Given: $\angle F A B \cong \angle G E D, \angle A B C \cong \angle D C E, \overline{A C} \cong \overline{E C}$ Prove: $\triangle A B C \cong \triangle E D C$

4-5 Triangle Congruence: ASA, AAS, and HL

Lesson Quiz: Part II Continued

Statements

1. $\angle F A B \cong \angle G E D$
2. $\angle B A C$ is a supp. of $\angle F A B$; $\angle D E C$ is a supp. of $\angle G E D$.
3. $\angle B A C \cong \angle D E C$
4. $\angle A C B \cong \angle D C E ; \overline{A C} \cong \overline{E C}$
5. $\triangle A B C \cong \triangle E D C$

Reasons

1. Given
2. Def. of supp. $\angle \mathrm{s}$
3. \cong Supp. Thm.
4. Given
5. ASA Steps 3,4

4-5 Triangle Congruence: ASA, AAS, and HL

Lesson Quiz: Part I

1. Show that $\triangle A B C \cong \triangle D B C$, when $x=6$.

$$
\begin{aligned}
\angle A B C & \cong \angle D B C \\
\overline{B C} & \cong \overline{B C} \\
\overline{A B} & \cong \overline{D B}
\end{aligned}
$$

$$
\text { So } \triangle A B C \cong \triangle D B C \text { by SAS }
$$

Which postulate, if any, can be used to prove the triangles congruent?
2.

3.

SSS

4-5 Triangle Congruence: ASA, AAS, and HL

Lesson Quiz: Part II

4. Given: $\overline{P N}$ bisects $\overline{M O}, P N \perp M O$ Prove: $\triangle M N P \cong \triangle O N P$

Statements	Reasons
1. $\overline{P N}$ bisects $\overline{M O}$	1. Given
2. $\overline{M N} \cong \overline{O N}$	2. Def. of bisect
3. $\overline{P N} \cong \overline{P N}$	3. Reflex. Prop. of \cong
4. $\overline{P N} \perp \overline{M O}$	4. Given
5. $\angle P N M$ and $\angle P N O$ are rt. $\angle \mathrm{s}$	5. Def. of \perp
6. $\angle P N M \cong \angle P N O$	6. Rt. $\angle \cong$ Thm.
7. $\triangle M N P \cong \triangle O N P$	7. SAS Steps $2,6,3$

