4-4 Triangle Congruence: SSS and SAS

Warm Up

1. Name the angle formed by $\overrightarrow{A B}$ and $\overrightarrow{A C}$. Possible answer: $\angle A$
2. Name the three sides of $\triangle A B C$.
$\overline{A B}, \overline{A C}, \overline{B C}$
3. $\triangle Q R S \cong \triangle L M N$. Name all pairs of congruent corresponding parts.
$\overline{Q R} \cong \overline{L M}, \overline{R S} \cong \overline{M N}, \overline{Q S} \cong \overline{L N}, \angle Q \cong \angle L$,
$\angle R \cong \angle M, \angle S \cong \angle N$

4-4 Triangle Congruence: SSS and SAS

Objectives

Prove triangles congruent by using SSS and SAS.

4-4 Triangle Congruence: SSS and SAS

Side-Side-Side Triangle Congruence

 (SSS): If all pairs of corresponding sides between two triangles are congruent, then the triangles are congruent.

CONCLUSION
$\triangle A B C \cong \triangle F D E$
by SSS

4-4 Triangle Congruence: SSS and SAS

Remember!

Adjacent triangles share a side, so you can apply the Reflexive Property to get a pair of congruent parts.

4-4 Triangle Congruence: SSS and SAS

Example 1: Using SSS to Prove Triangle Congruence

Prove $\triangle A B C \cong \triangle D B C$ using given info from the picture.

It is given that $\overline{A C} \cong \overline{D C}$ and that $\overline{A B} \cong \overline{D B}$. By the Reflexive Property of Congruence, $\overline{B C} \cong \overline{B C}$. Therefore $\triangle A B C \cong \triangle D B C$ by SSS.

4-4 Triangle Congruence: SSS and SAS

Check It Out! Example 1

Prove
 $\triangle A B C \cong \triangle C D A$.

It is given that $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \cong \overline{D A}$.
By the Reflexive Property of Congruence, $\overline{A C} \cong \overline{C A}$.
So $\triangle A B C \cong \triangle C D A$ by SSS.

4-4 Triangle Congruence: SSS and SAS

An included angle is an angle formed by two adjacent sides of a polygon.
$\angle B$ is the included angle between sides $\overline{A B}$ and $\overline{B C}$.

4-4 Triangle Congruence: SSS and SAS

It can also be shown that only two pairs of congruent corresponding sides are needed to prove the congruence of two triangles if the included angles are also congruent.

4-4 Triangle Congruence: SSS and SAS

Postulate 4-4-2 Side-Angle-Side (SAS) Congruence

POSTULATE	HYPOTHESIS	CONCLUSION
If two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then the triangles are congruent.	B	

4-4 Triangle Congruence: SSS and SAS

Caution

The letters SAS are written in that order because the congruent angles must be between pairs of congruent corresponding sides.

4-4 Triangle Congruence: SSS and SAS

Example 2: Engineering Application

Prove $\Delta X Y Z \cong \triangle V W Z$.

It is given that $\overline{X Z} \cong \overline{V Z}$ and that $\overline{Y Z} \cong \overline{W Z}$. By the Vertical \angle s Theorem. $\angle X Z Y \cong \angle V Z W$. Therefore $\triangle X Y Z \cong \triangle V W Z$ by SAS.

4-4 Triangle Congruence: SSS and SAS

Check It Out! Example 2

Prove $\triangle A B C \cong \triangle D B C$.

It is given that $\overline{B A} \cong \overline{B D}$ and $\angle A B C \cong \angle D B C$. By the Reflexive Property of $\cong, \overline{B C} \cong \overline{B C}$. So $\triangle A B C \cong \triangle D B C$ by SAS.

4-4 Triangle Congruence: SSS and SAS

Example 3A: Verifying Triangle Congruence

Show that the triangles are congruent for the given value of the variable.
$\triangle M N O \cong \triangle P Q R$, when $x=5$.

$$
\begin{aligned}
P Q & =x+2 \\
& =5+2=7 \\
Q R & =x=5
\end{aligned}
$$

$$
P R=3 x-9
$$

$$
\overline{P Q} \cong \overline{M N}, \overline{Q R} \cong \overline{N O}, \overline{P R} \cong \overline{M O}
$$

$$
=3(5)-9=6
$$

$\triangle M N O \cong \triangle P Q R$ by SSS.

4-4 Triangle Congruence: SSS and SAS

Example 3B: Verifying Triangle Congruence

Show that the triangles are congruent for the given value of the variable.
$\Delta S T U \cong \Delta V W X$, when $y=4$.

$$
\begin{aligned}
S T & =2 y+3 \\
& =2(4)+3=11 \\
T U & =y+3 \\
& =4+3=7 \\
\mathrm{~m} \angle T & =20 y+12 \\
& =20(4)+12=92^{\circ}
\end{aligned}
$$

$\overline{S T} \cong \overline{V W}, \overline{T U} \cong \overline{W X}$, and $\angle T \cong \angle W$.
$\Delta S T U \cong \triangle V W X$ by SAS.

(4-4 Triangle Congruence: SSS and SAS

Check It Out! Example 3

Show that $\triangle A D B \cong \triangle C D B, t=4$.

$$
\begin{aligned}
D A & =3 t+1 \\
& =3(4)+1=13 \\
D C & =4 t-3 \\
& =4(4)-3=13 \\
\mathrm{~m} \angle D & =2 t^{2} \\
& =2(16)=32^{\circ} \\
\angle A D B & \cong \angle C D B \text { Def. of } \cong
\end{aligned}
$$

$\overline{D B} \cong \overline{D B} \quad$ Reflexive Prop. of \cong.

$\triangle A D B \cong \triangle C D B$ by SAS.

4-4 Triangle Congruence: SSS and SAS

Example 4: Proving Triangles Congruent

Statements	Reasons	
1. $\overline{B C} \\| \overline{A D}$	1. Given	
2. $\angle C B D \cong \angle A B D$	2. Alt. Int. $\angle \mathrm{s}$ Thm.	
3. $\overline{B C} \cong \overline{A D}$	3. Given	
4. $\overline{B D} \cong \overline{B D}$	4. Reflex. Prop. of \cong	
5. $\triangle A B D \cong \triangle C D B$	5. SAS Steps $3,2,4$	

(4-4) Triangle Congruence: SSS and SAS

Check It Out! Example 4

Given: $\overrightarrow{Q P}$ bisects $\angle R Q S . \overline{Q R} \cong \overline{Q S}$ Prove: $\triangle R Q P \cong \triangle S Q P$

Statements	Reasons
1. $\overline{Q R} \cong \overline{Q S}$	1. Given
2. $\overrightarrow{Q P}$ bisects $\angle R Q S$	2. Given
3. $\angle R Q P \cong \angle S Q P$	3. Def. of bisector
4. $\overline{Q P} \cong \overline{Q P}$	4. Reflex. Prop. of \cong
5. $\Delta R Q P \cong \triangle S Q P$	5. SAS Steps $1,3,4$

4-4 Triangle Congruence: SSS and SAS

Lesson Quiz: Part I

1. Show that $\triangle A B C \cong \triangle D B C$, when $x=6$.

$$
\begin{aligned}
\angle A B C & \cong \angle D B C \\
\overline{B C} & \cong \overline{B C} \\
\overline{A B} & \cong \overline{D B}
\end{aligned}
$$

$$
\text { So } \triangle A B C \cong \triangle D B C \text { by SAS }
$$

Which postulate, if any, can be used to prove the triangles congruent?
2.

3.

SSS

4-4 Triangle Congruence: SSS and SAS

Lesson Quiz: Part II

4. Given: $\overline{P N}$ bisects $\overline{M O}, P N \perp M O$ Prove: $\triangle M N P \cong \triangle O N P$

Statements	Reasons
1. $\overline{P N}$ bisects $\overline{M O}$	1. Given
2. $\overline{M N} \cong \overline{O N}$	2. Def. of bisect
3. $\overline{P N} \cong \overline{P N}$	3. Reflex. Prop. of \cong
4. $\overline{P N} \perp \overline{M O}$	4. Given
5. $\angle P N M$ and $\angle P N O$ are rt. $\angle \mathrm{s}$	5. Def. of \perp
6. $\angle P N M \cong \angle P N O$	6. Rt. $\angle \cong$ Thm.
7. $\triangle M N P \cong \triangle O N P$	7. SAS Steps $2,6,3$

(4-4) Triangle Congruence: SSS and SAS

- HOMEWORK

-Page 246 \#8, 9, 11-18

