Warm Up

- **1.** Name the angle formed by \overrightarrow{AB} and \overrightarrow{AC} . Possible answer: $\angle A$
- **2.** Name the three sides of $\triangle ABC$. $\overline{AB}, \overline{AC}, \overline{BC}$
- **3.** $\triangle QRS \cong \triangle LMN$. Name all pairs of congruent corresponding parts. $\overline{QR} \cong \overline{LM}, \ \overline{RS} \cong \overline{MN}, \ \overline{QS} \cong \overline{LN}, \ \angle Q \cong \angle L, \ \angle R \cong \angle M, \ \angle S \cong \angle N$

Prove triangles congruent by using SSS and SAS.

Holt Geometry

Side-Side-Side Triangle Congruence (SSS): If all pairs of corresponding sides between two triangles are congruent, then the triangles are congruent.

Remember!

Adjacent triangles share a side, so you can apply the Reflexive Property to get a pair of congruent parts.

Holt Geometry

Example 1: Using SSS to Prove Triangle Congruence

Prove $\triangle ABC \cong \triangle DBC$ using given info from the picture.

It is given that $\overline{AC} \cong \overline{DC}$ and that $\overline{AB} \cong \overline{DB}$. By the Reflexive Property of Congruence, $\overline{BC} \cong \overline{BC}$. Therefore $\triangle ABC \cong \triangle DBC$ by SSS.

Check It Out! Example 1

Prove $\triangle ABC \cong \triangle CDA.$

It is given that $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \cong \overline{DA}$. By the Reflexive Property of Congruence, $\overline{AC} \cong \overline{CA}$. So $\triangle ABC \cong \triangle CDA$ by SSS.

An **included angle** is an angle formed by two adjacent sides of a polygon.

 $\angle B$ is the included angle between sides \overline{AB} and \overline{BC} .

It can also be shown that only two pairs of congruent corresponding sides are needed to prove the congruence of two triangles if the included angles are also congruent.

ļ	Postulate 4-4-2 Side-Angle-Side (SAS) Congruence						
	POSTULATE		HYPOTHESIS	CONCLUSION			
	If two sides and the angle of one triangle congruent to two sid and the included and another triangle, the triangles are congrue	included e are des gle of en the ent.		$\triangle ABC \cong \triangle EFD$			

Caution

The letters SAS are written in that order because the congruent angles must be between pairs of congruent corresponding sides.

Holt Geometry

Example 2: Engineering Application

Prove $\triangle XYZ \cong \triangle VWZ$.

It is given that $\overline{XZ} \cong \overline{VZ}$ and that $\overline{YZ} \cong \overline{WZ}$. By the Vertical \angle s Theorem. $\angle XZY \cong \angle VZW$. Therefore $\triangle XYZ \cong \triangle VWZ$ by SAS.

Check It Out! Example 2

Prove $\triangle ABC \cong \triangle DBC$.

It is given that $\overline{BA} \cong \overline{BD}$ and $\angle ABC \cong \angle DBC$. By the Reflexive Property of \cong , $\overline{BC} \cong \overline{BC}$. So $\triangle ABC \cong \triangle DBC$ by SAS.

Example 3A: Verifying Triangle Congruence

Show that the triangles are congruent for the given value of the variable. $\triangle MNO \cong \triangle PQR$, when x = 5.

 $\overline{PQ} \cong \overline{MN}, \ \overline{QR} \cong \overline{NO}, \ \overline{PR} \cong \overline{MO}$ $\Delta MNO \cong \Delta PQR$ by SSS.

Example 3B: Verifying Triangle Congruence

Show that the triangles are congruent for the given value of the variable.

 \triangle *STU* $\cong \triangle$ *VWX*, when *y* = 4.

$$ST = 2y + 3$$

= 2(4) + 3 = 11
$$TU = y + 3$$

= 4 + 3 = 7
$$m \angle T = 20y + 12$$

= 20(4)+12 = 92°

 $\overline{ST} \cong \overline{VW}, \ \overline{TU} \cong \overline{WX}, \ \text{and} \ \angle T \cong \angle W.$ $\Delta STU \cong \Delta VWX \ \text{by SAS.}$

Check It Out! Example 3

Show that $\triangle ADB \cong \triangle CDB$, t = 4.

$$DA = 3t + 1$$

$$= 3(4) + 1 = 13$$

$$DC = 4t - 3$$

$$= 4(4) - 3 = 13$$

$$m\angle D = 2t^{2}$$

$$= 2(16) = 32^{\circ}$$

$$\angle ADB \cong \angle CDB \ Def. \ of \ \cong.$$

$$\overline{DB} \cong \overline{DB} \quad Reflexive \ Prop. \ of \ \cong.$$

$$\Delta ADB \cong \Delta CDB \ by \ SAS.$$

Example 4: Proving Triangles Congruent

Given: $BC \parallel AD, BC \cong AD$

Prove: $\triangle ABD \cong \triangle CDB$

Statements	Reasons	
1. <i>BC</i> <i>AD</i>	1. Given	
2. ∠ <i>CBD</i> ≅ ∠ <i>ABD</i>	2. Alt. Int. ∠s Thm.	
3. $\overline{BC} \cong \overline{AD}$	3. Given	
4. $\overline{BD} \cong \overline{BD}$	4. Reflex. Prop. of \cong	
5. $\triangle ABD \cong \triangle CDB$	5. SAS Steps 3, 2, 4	

Check It Out! Example 4

Given: \overrightarrow{QP} bisects $\angle RQS$. $\overrightarrow{QR} \cong \overrightarrow{QS}$ **Prove:** $\Delta RQP \cong \Delta SQP$

Statements	Reasons	
1. $\overline{QR} \cong \overline{QS}$	1. Given	
2. \overrightarrow{QP} bisects $\angle RQS$	2. Given	
3. ∠ <i>RQP</i> ≅ ∠ <i>SQP</i>	3. Def. of bisector	
4. $\overline{QP} \cong \overline{QP}$	4. Reflex. Prop. of \cong	
5. $\Delta RQP \cong \Delta SQP$	5. SAS Steps 1, 3, 4	

Holt Geometry

Lesson Quiz: Part I

1. Show that $\triangle ABC \cong \triangle DBC$, when x = 6.

 $\angle ABC \cong \angle DBC$ $\overline{BC} \cong \overline{BC}$ $\overline{AB} \cong \overline{DB}$ So $\triangle ABC \cong \triangle DBC$ by SAS

Which postulate, if any, can be used to prove the triangles congruent?

Lesson Quiz: Part II

4. Given: \overline{PN} bisects \overline{MO} , $PN \perp MO$

Prove: $\Delta MNP \cong \Delta ONP$

Statements	Reasons	
1. \overline{PN} bisects \overline{MO}	1. Given	
2. $\overline{MN} \cong \overline{ON}$	2. Def. of bisect	
3. $\overline{PN} \cong \overline{PN}$	3. Reflex. Prop. of \cong	
4. $\overline{PN} \perp \overline{MO}$	4. Given	
5. $\angle PNM$ and $\angle PNO$ are rt. $\angle s$	5. Def. of ⊥	
6. $\angle PNM \cong \angle PNO$	6. Rt. ∠ ≅ Thm.	
7. $\Delta MNP \cong \Delta ONP$	7. SAS Steps 2, 6, 3	

• HOMEWORK

-Page 246 #8, 9, 11 - 18

Holt Geometry