4-3 Congruent Triangles

BELLWORK

1. The measure of one of the acute angles in a right triangle is $56 \frac{2}{3} \circ$. What is the measure of the other acute angle? $33 \frac{1}{3}^{\circ}$
2. Find $\mathrm{m} \angle A B D$.
124°

4-3 Congruent Triangles

Objectives

Use properties of congruent triangles.

Prove triangles congruent by using the definition of congruence.

4-3 Congruent Triangles

Vocabulary

corresponding angles corresponding sides congruent polygons

4-3 Congruent Triangles

Third Angles Theorem:

THEOREM	HYPOTHESIS	CONCLUSION
If two angles of one triangle are congruent to two angles of another triangle, then the third pair of angles are congruent.		R

4-3 Congruent Triangles

Example 4: Applying the Third Angles Theorem

Find $\mathbf{m} \angle K$ and $\mathbf{m} \angle \mathbf{J}$.

$\angle K \cong \angle J \quad$ Third $\angle s$ Thm.

$$
\mathrm{m} \angle K=\mathrm{m} \angle J \quad \text { Def. of } \cong \angle \mathrm{s} .
$$

$$
4 y^{2}=6 y^{2}-40 \text { Substitute } 4 y^{2} \text { for } m \angle K \text { and } 6 y^{2}-40 \text { for } m \angle J .
$$

$-2 y^{2}=-40 \quad$ Subtract $6 y^{2}$ from both sides.

$$
y^{2}=20 \quad \text { Divide both sides by }-2
$$

So $m \angle K=4 y^{2}=4(20)=80^{\circ}$.
Since $\mathrm{m} \angle \mathrm{J}=\mathrm{m} \angle K, \mathrm{~m} \angle \mathrm{~J}=80^{\circ}$.

4-3 Congruent Triangles

Check It Out! Example 4

$2 x^{2}=4 x^{2}-32$ Substitute $2 x^{2}$ for $m \angle P$ and $4 x^{2}-32$ for $m \angle T$.
$-2 x^{2}=-32 \quad$ Subtract $4 x^{2}$ from both sides.

$$
x^{2}=16 \quad \text { Divide both sides by }-2
$$

So $m \angle P=2 x^{2}=2(16)=32^{\circ}$.
Since $\mathrm{m} \angle P=\mathrm{m} \angle T, \mathrm{~m} \angle T=32^{\circ}$.

Congruent Triangles

Geometric figures are congruent if they are the same size and shape.

Corresponding angles and corresponding sides: In the same position on a different figure of the same shape.

Congruent polygons - corresponding sides and angles are congruent.

4-3 Congruent Triangles

Properties of Congruent Polygons

DIAGRAM	CORRESPONDING ANGLES	CORRESPONDING SIDES
	$\begin{aligned} & \angle A \cong \angle D \\ & \angle B \cong \angle E \\ & \angle C \cong \angle F \end{aligned}$	$\begin{aligned} & \overline{A B} \cong \overline{D E} \\ & \overline{B C} \cong \overline{E F} \\ & \overline{A C} \cong \overline{D F} \end{aligned}$
polygon $P Q R S \cong$ polygon $W X Y Z$	$\begin{aligned} & \angle P \cong \angle W \\ & \angle Q \cong \angle X \\ & \angle R \cong \angle Y \\ & \angle S \cong \angle Z \end{aligned}$	$\begin{aligned} & \overline{P Q} \cong \overline{W X} \\ & \overline{Q R} \cong \overline{X Y} \\ & \overline{R S} \cong \overline{Y Z} \\ & \overline{P S} \cong \overline{W Z} \end{aligned}$

4-3 Congruent Triangles

Helpful Hint

Two vertices that are the endpoints of a side are called consecutive vertices.

For example, P and Q are consecutive vertices.

4-3 Congruent Triangles

To name a polygon, write the vertices in consecutive order. For example, you can name polygon $P Q R S$ as $Q R S P$ or $S R Q P$, but not as $P R Q S$.

In a congruence statement, pay attention to the order of the vertices; it indicates the corresponding parts.

4-3 Congruent Triangles

Helpful Hint
 When you write a statement such as $\triangle A B C \cong \triangle D E F$, you are also stating which parts are congruent.

4-3 Congruent Triangles

Example 1: Naming Congruent Corresponding Parts

Given: $\triangle P Q R \cong \Delta S T W$
Identify all pairs of corresponding congruent parts.
Angles: $\angle P \cong \angle S, \angle Q \cong \angle T, \angle R \cong \angle W$
Sides: $\overline{P Q} \cong \overline{S T}, \overline{Q R} \cong \overline{T W}, \overline{P R} \cong \overline{S W}$

4-3 Congruent Triangles

Check It Out! Example 1

If polygon LMNP \cong polygon EFGH, identify all pairs of corresponding congruent parts.

Angles: $\angle L \cong \angle E, \angle M \cong \angle F, \angle N \cong \angle G, \angle P \cong \angle H$ Sides: $\overline{L M} \cong \overline{E F}, \overline{M N} \cong \overline{F G}, \overline{N P} \cong \overline{G H}, \overline{L P \cong} \cong \overline{E H}$

4-3 Congruent Triangles

Example 2A: Using Corresponding Parts of Congruent Triangles

Given: $\triangle A B C \cong \triangle D B C$.
Find the value of x.
$\angle B C A$ and $\angle B C D$ are rt. $\angle \mathrm{s}$. Def. of \perp lines.

$$
\begin{array}{rlrl}
\angle B C A & \cong \angle B C D & & \text { Rt. } \angle \cong \text { Thm } . \\
\mathrm{m} \angle B C A & =\mathrm{m} \angle B C D & & \text { Def. of } \because \mathrm{s} \\
(2 x-16)^{\circ} & =90^{\circ} & & \text { Substitute values for } m \angle B C A \text { and } \\
2 x & =106 & & m \angle B C D . \\
x & =53 & & \text { Add } 16 \text { to both sides. } \\
& & \text { Divide both sides by } 2 .
\end{array}
$$

4-3 Congruent Triangles

Example 2B: Using Corresponding Parts of Congruent Triangles

Given: $\triangle A B C \cong \triangle D B C$.
Find $\mathrm{m} \angle D B C$.
$\mathrm{m} \angle A B C+\mathrm{m} \angle B C A+\mathrm{m} \angle A=180^{\circ} \triangle$ Sum Thm.

$$
\begin{aligned}
& \mathrm{m} \angle A B C+90+49.3=180 \begin{array}{l}
\text { Substitute values for } m \angle B C A \text { and } \\
m \angle A .
\end{array}
\end{aligned}
$$

$$
\mathrm{m} \angle A B C+139.3=180 \text { Simplify }
$$

4-3 Congruent Triangles

Check It Out! Example 2a

Given: $\triangle A B C \cong \triangle D E F$
Find the value of x.

$$
\begin{aligned}
\overline{A B} & \cong \overline{D E} \\
A B & =D E \\
2 x-2 & =6 \\
2 x & =8 \\
x & =4
\end{aligned}
$$

Corr. sides of $\cong \Delta$ s are \cong.
Def. of \cong parts.
Substitute values for $A B$ and $D E$.
Add 2 to both sides.
Divide both sides by 2.

4-3 Congruent Triangles

Check It Out! Example 2b

Given: $\triangle A B C \cong \triangle D E F$

Find $\mathrm{m} \angle F$.

$$
\begin{aligned}
\mathrm{m} \angle E F D+\mathrm{m} \angle D E F+\mathrm{m} \angle F D E & =180^{\circ} & & \Delta \text { Sum Thm. } \\
\angle A B C & \cong \angle D E F & & \text { Corr. } \angle \mathrm{s} \text { of } \cong \triangle \text { are } \cong . \\
\mathrm{m} \angle A B C & =\mathrm{m} \angle D E F & & \text { Def. of } \cong \mathrm{s} . \\
\mathrm{m} \angle D E F & =53^{\circ} & & \text { Transitive Prop. of }=. \\
\mathrm{m} \angle E F D+53+90 & =180 & & \begin{array}{l}
\text { Substitute values for } \mathrm{m} \angle D E F \\
\mathrm{and} m \angle F D E .
\end{array} \\
\mathrm{m} \angle F+143 & =180 & & \text { Simplify. } \\
\mathrm{m} \angle F & =37^{\circ} & & \text { Subtract } 143 \text { from both sides. }
\end{aligned}
$$

4-3 Congruent Triangles

Example 3: Proving Triangles Congruent

Given: $\angle Y W X$ and $\angle Y W Z$ are right angles. $\overline{Y W}$ bisects $\angle X Y Z . W$ is the midpoint of $\overline{X Z} . \overline{X Y} \cong \overline{Y Z}$. Prove: $\triangle X Y W \cong \triangle Z Y W$

4-3 Congruent Triangles

Statements

Reasons

1. $\angle Y W X$ and $\angle Y W Z$ are rt. $\angle \mathrm{s}$.
2. $\angle Y W X \cong \angle Y W Z$
3. $Y W$ bisects $\angle X Y Z$
4. $\angle X Y W \cong \angle Z Y W$
5. W is mdpt. of $\overline{X Z}$
6. $\overline{X W} \cong \overline{Z W}$
7. $\overline{Y W} \cong \overline{Y W}$
8. $\angle X \cong \angle Z$
9. $\overline{X Y} \cong \overline{Y Z}$
10. $\triangle X Y W \cong \triangle Z Y W$
11. Given
12. Rt. $\angle \cong$ Thm.
13. Given
14. Def. of bisector
15. Given
16. Def. of mdpt.
17. Reflex. Prop. of \cong
18. Third $\angle \mathrm{s}$ Thm.
19. Given
20. Def. of $\cong \Delta$

4-3 Congruent Triangles

Check It Out! Example 3

Given: $\overline{A D}$ bisects $\overline{B E}$. $\overline{B E}$ bisects $\overline{A D}$.
$\overline{A B} \cong \overline{D E}, \angle A \cong \angle D$ Prove: $\triangle A B C \cong \triangle D E C$

Congruent Triangles

Statements	Reasons
1. $\angle A \cong \angle D$	1. Given
2. $\angle B C A \cong \angle D C E$	2. Vertical $\angle \mathrm{s}$ are \cong.
3. $\angle A B C \cong \angle D E C$	3. Third $\angle \mathrm{s}$ Thm.
4. $\overline{A B} \cong \overline{D E}$	4. Given
5. $\overline{A D}$ bisects $\overline{B E}$,	5. Given
$\overline{B E}$ bisects $\overline{A D}$	
6. $\overline{B C} \cong \overline{E C}, \overline{A C} \cong \overline{D C}$	6. Def. of bisector
7. $\triangle A B C \cong \Delta D E C$	7. Def. of $\cong \Delta \mathrm{s}$

Congruent Triangles

Example 4: Engineering Application

The diagonal bars across a gate give it support. Since the angle measures and the lengths of the corresponding sides are the same, the triangles are congruent.

Given: $\overline{P R}$ and $\overline{Q T}$ bisect each other.
$\angle P Q S \cong \angle R T S, \overline{Q P} \cong \overline{R T}$
Prove: $\triangle Q P S \cong \triangle T R S$

4-3 Congruent Triangles

Example 4 Continued

Statements

1. $\overline{Q P} \cong \overline{R T}$
2. $\angle P Q S \cong \angle R T S$
3. $\overline{P R}$ and $\overline{Q T}$ bisect each other.
4. $\overline{Q S} \cong \overline{T S}, \overline{P S} \cong \overline{R S}$
5. $\angle Q S P \cong \angle T S R$
6. $\angle Q S P \cong \angle T R S$
7. $\triangle Q P S \cong \triangle T R S$

Reasons

1. Given
2. Given
3. Given
4. Def. of bisector
5. Vert. $\angle \mathrm{s}$ Thm.
6. Third $\angle \mathrm{s}$ Thm.
7. Def. of $\cong \Delta s$

4-3 Congruent Triangles

Check It Out! Example 4

Use the diagram to prove the following.

Given: $\overline{M K}$ bisects $\overline{J L} . \overline{J L}$ bisects $\overline{M K} . \overline{J K} \cong \overline{M L}$. $\overline{J K} \| \overline{M L}$.

Prove: $\triangle J K N \cong \triangle L M N$

4-3 Congruent Triangles

Check It Out! Example 4 Continued

Statements

1. $\overline{J K} \cong \overline{M L}$
2. $\overline{J K} \| \overline{M L}$
3. $\angle J K N \cong \angle N M L$
4. $\overline{J L}$ and $\overline{M K}$ bisect each other.
5. $\overline{J N} \cong \overline{L N}, \overline{M N} \cong \overline{K N}$
6. $\angle K N J \cong \angle M N L$
7. $\angle K J N \cong \angle M L N$
8. $\triangle J K N \cong \triangle L M N$

Reasons

1. Given
2. Given
3. Alt int. $\angle \mathrm{s}$ are \cong.
4. Given
5. Def. of bisector
6. Vert. $\angle \mathrm{s}$ Thm.
7. Third $\angle \mathrm{s}$ Thm.
8. Def. of $\cong \Delta s$

4-3 Congruent Triangles

Lesson Quiz

1. $\triangle A B C \cong \triangle J K L$ and $A B=2 x+12$. $J K=4 x-50$. Find x and $A B$. 31, 74

Given that polygon MNOP \cong polygon $Q R S T$, identify the congruent corresponding part.
2. $\overline{N O} \cong \overline{R S}$
3. $\angle T \cong \angle P$
4. Given: $\triangle A B C \cong \triangle D E F$

Find $\mathrm{m} \angle F$.

4-3 Congruent Triangles

Lesson Quiz

4.

Statements	Reasons
1. $\angle A \cong \angle E$	1. Given
2. C is mdpt. of $B D$ and $A E$	2. Given
3. $\overline{A C} \cong \overline{E C} ; \overline{B C} \cong \overline{D C}$	3. Def. of mdpt.
4. $\overline{A B} \cong \overline{E D}$	4. Given
5. $\angle A C B \cong \angle E C D$	5. Vert. $\angle \mathrm{s}$ Thm.
6. $\angle B \cong \angle D$	6. Third $\angle \mathrm{s}$ Thm.
7. $\triangle A B C \cong \triangle E D C$	7. Def. of $\cong \Delta \mathrm{s}$

4-3 Congruent Triangles

- HOMEWORK

-Page 234 \# 2-10, 13-19

