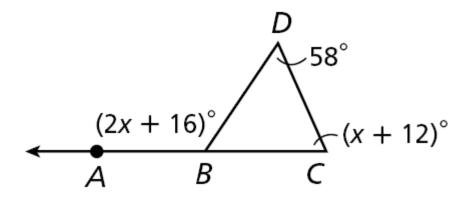
BELLWORK

1. The measure of one of the acute angles in a right triangle is 56 $\frac{2}{3}$ °. What is the measure of the other acute angle? $33\frac{1}{3}$ °

2. Find m $\angle ABD$.

124°



Objectives

Use properties of congruent triangles.

Prove triangles congruent by using the definition of congruence.

Vocabulary

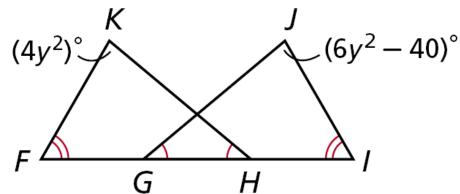
corresponding angles corresponding sides congruent polygons

Third Angles Theorem:

THEOREM	HYPOTHESIS	CONCLUSION
If two angles of one triangle are congruent to two angles of another triangle, then the third pair of angles are congruent.	N S M	∠ N ≅ ∠ T

Example 4: Applying the Third Angles Theorem

Find $m \angle K$ and $m \angle J$.



$$\angle K \cong \angle J$$

Third /s Thm.

$$m \angle K = m \angle J$$

Def. of \simeq /s .

$$4y^2 = 6y^2 - 40$$
 Substitute $4y^2$ for $m \angle K$ and $6y^2 - 40$ for $m \angle J$.

$$-2y^2 = -40$$

Subtract 6y² from both sides.

$$y^2 = 20$$

Divide both sides by -2.

So
$$m \angle K = 4y^2 = 4(20) = 80^\circ$$
.

Since
$$m \angle J = m \angle K$$
, $m \angle J = 80^{\circ}$.

Check It Out! Example 4

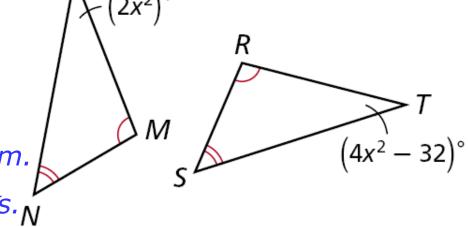
Find $m \angle P$ and $m \angle T$.

$$\angle P \cong \angle T$$

$$m\angle P = m\angle T$$

Third ∠s Thm.

Def. of $\cong \angle s$.



$$2x^2 = 4x^2 - 32$$
 Substitute $2x^2$ for $m \angle P$ and $4x^2 - 32$ for $m \angle T$.

$$-2x^2 = -32$$

Subtract 4x² from both sides.

$$x^2 = 16$$

Divide both sides by -2.

So
$$m\angle P = 2x^2 = 2(16) = 32^\circ$$
.

Since
$$m \angle P = m \angle T$$
, $m \angle T = 32^{\circ}$.

Geometric figures are congruent if they are the same size and shape.

<u>Corresponding angles</u> and <u>corresponding sides</u>: In the same position on a different figure of the same shape.

<u>Congruent polygons</u> - corresponding sides and angles are congruent.

Properties of Congruent Polygons

DIAGRAM	CORRESPONDING ANGLES	CORRESPONDING SIDES
$A \longrightarrow B \\ C \longrightarrow F$ $\triangle ABC \cong \triangle DEF$	$\angle A \cong \angle D$ $\angle B \cong \angle E$ $\angle C \cong \angle F$	$\overline{AB} \cong \overline{DE}$ $\overline{BC} \cong \overline{EF}$ $\overline{AC} \cong \overline{DF}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\angle P \cong \angle W$ $\angle Q \cong \angle X$ $\angle R \cong \angle Y$ $\angle S \cong \angle Z$	$\overline{PQ} \cong \overline{WX}$ $\overline{QR} \cong \overline{XY}$ $\overline{RS} \cong \overline{YZ}$ $\overline{PS} \cong \overline{WZ}$

Helpful Hint

Two vertices that are the endpoints of a side are called consecutive vertices.

For example, *P* and *Q* are consecutive vertices.

To name a polygon, write the vertices in consecutive order. For example, you can name polygon *PQRS* as *QRSP* or *SRQP*, but **not** as *PRQS*.

In a congruence statement, pay attention to **the order of the vertices**; it indicates the corresponding parts.

Helpful Hint

When you write a statement such as $\triangle ABC \cong \triangle DEF$, you are also stating which parts are congruent.

Example 1: Naming Congruent Corresponding Parts

Given: $\Delta PQR \cong \Delta STW$

Identify all pairs of corresponding congruent parts.

Angles: $\angle P \cong \angle S$, $\angle Q \cong \angle T$, $\angle R \cong \angle W$

Sides: $PQ \cong ST$, $QR \cong TW$, $PR \cong SW$

Check It Out! Example 1

If polygon $LMNP \cong polygon EFGH$, identify all pairs of corresponding congruent parts.

Angles: $\angle L \cong \angle E$, $\angle M \cong \angle F$, $\angle N \cong \angle G$, $\angle P \cong \angle H$

Sides: $\overline{LM} \cong \overline{EF}$, $\overline{MN} \cong \overline{FG}$, $\overline{NP} \cong \overline{GH}$, $\overline{LP} \cong \overline{EH}$

Example 2A: Using Corresponding Parts of Congruent Triangles

Given: $\triangle ABC \cong \triangle DBC$.

Find the value of x.

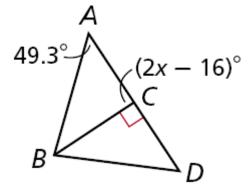
 $\angle BCA$ and $\angle BCD$ are rt. \angle s.

$$m\angle BCA = m\angle BCD$$

$$(2x - 16)^{\circ} = 90^{\circ}$$

$$2x = 106$$

$$x = 53$$



Def. of | lines.

Rt.
$$\angle \cong Thm$$
.

Def. of
$$\cong \angle s$$

Substitute values for m /BCA and $m \angle BCD$.

Add 16 to both sides.

Divide both sides by 2.

Example 2B: Using Corresponding Parts of Congruent Triangles

Given: $\triangle ABC \cong \triangle DBC$.

Find m∠DBC.

$$m\angle ABC + m\angle BCA + m\angle A = 180^{\circ} \Delta Sum Thm.$$

 $m\angle ABC + 90 + 49.3 = 180$ Substitute values for $m\angle BCA$ and $m\angle A$.

$$m\angle ABC + 139.3 = 180$$
 Simplify.

 $m\angle ABC = 40.7$ Subtract 139.3 from both sides.

 $\angle DBC \cong \angle ABC$ Corr. $\angle s$ of $\cong \Delta s$ are \cong .

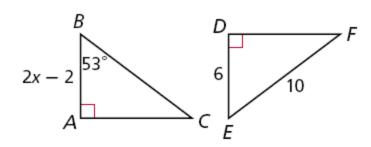
 $m\angle DBC = m\angle ABC$ Def. of $\cong \angle s$.

 $m\angle DBC = 40.7^{\circ}$ Trans. Prop. of =

Check It Out! Example 2a

Given: $\triangle ABC \cong \triangle DEF$

Find the value of x.



$$\overline{AB} \cong \overline{DE}$$

$$AB = DE$$

$$2x - 2 = 6$$

$$2x = 8$$

$$x = 4$$

Corr. sides of $\simeq \Delta s$ are \simeq .

Def. of \cong parts.

Substitute values for AB and DE.

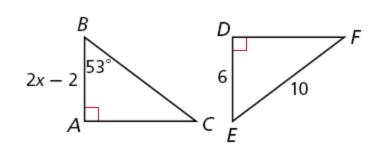
Add 2 to both sides.

Divide both sides by 2.

Check It Out! Example 2b

Given: $\triangle ABC \cong \triangle DEF$

Find m $\angle F$.



$$m\angle EFD + m\angle DEF + m\angle FDE = 180^{\circ}$$

 $\angle ABC \cong \angle DEF$

 Δ Sum Thm.

Corr. $\angle s$ of $\cong \Delta$ are \cong .

$$m\angle ABC = m\angle DEF$$
 Def. of $\cong \angle s$.

$$m\angle DEF = 53^{\circ}$$

Transitive Prop. of =.

$$m\angle EFD + 53 + 90 = 180$$

Substitute values for m / DEF and m /FDE.

$$m \angle F + 143 = 180$$

Simplify.

$$m\angle F = 37^{\circ}$$

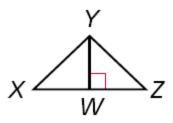
Subtract 143 from both sides.

Example 3: Proving Triangles Congruent

Given: $\angle YWX$ and $\angle YWZ$ are right angles.

 \overline{YW} bisects $\angle XYZ$. W is the midpoint of \overline{XZ} . $\overline{XY} \cong \overline{YZ}$.

Prove: $\Delta XYW \simeq \Delta ZYW$



Statements	Reasons
1. $\angle YWX$ and $\angle YWZ$ are rt. $\angle s$.	1. Given
2. ∠ <i>YWX</i> ≅ ∠ <i>YWZ</i>	2. Rt. ∠ ≅ Thm.
3. YW bisects ∠XYZ	3. Given
4. ∠XYW ≅ ∠ZYW	4. Def. of bisector
5. W is mdpt. of \overline{XZ}	5. Given
6. $\overline{XW} \cong \overline{ZW}$	6. Def. of mdpt.
7. $\overline{YW} \cong \overline{YW}$	7. Reflex. Prop. of ≅
8. ∠X ≅ ∠Z	8. Third ∠s Thm.
9. $\overline{XY} \cong \overline{YZ}$	9. Given
10. $\Delta XYW \cong \Delta ZYW$	10. Def. of $\cong \Delta$

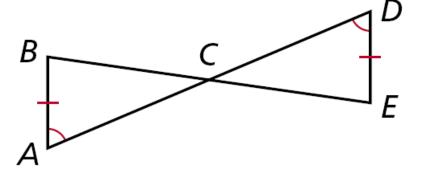
Check It Out! Example 3

Given: \overline{AD} bisects \overline{BE} .

 \overline{BE} bisects \overline{AD} .

 $\overline{AB} \cong \overline{DE}$, $\angle A \cong \angle D$

Prove: $\triangle ABC \cong \triangle DEC$



Statements	Reasons
1. ∠A ≅ ∠D	1. Given
2. ∠BCA ≅ ∠DCE	2. Vertical ∠s are ≅.
3. ∠ABC ≅ ∠DEC	3. Third ∠s Thm.
4. $\overline{AB} \cong \overline{DE}$	4. Given
5. \overline{AD} bisects \overline{BE} , \overline{BE} bisects \overline{AD}	5. Given
6. $\overline{BC} \cong \overline{EC}$, $\overline{AC} \cong \overline{DC}$	6. Def. of bisector
7. ∆ <i>ABC</i> ≅ ∆ <i>DEC</i>	7. Def. of $\cong \Delta s$

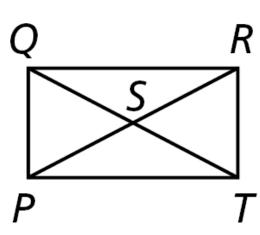
Example 4: Engineering Application

The diagonal bars across a gate give it support. Since the angle measures and the lengths of the corresponding sides are the same, the triangles are congruent.

Given: \overline{PR} and \overline{QT} bisect each other.

$$\angle PQS \cong \angle RTS$$
, $\overline{QP} \cong \overline{RT}$

Prove: $\triangle QPS \cong \triangle TRS$



Example 4 Continued

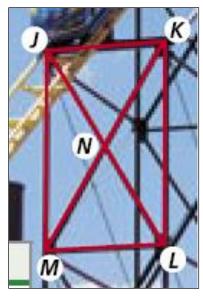
Statements	Reasons
1. $\overline{QP} \cong \overline{RT}$	1. Given
2. ∠PQS ≅ ∠RTS	2. Given
3. \overline{PR} and \overline{QT} bisect each other.	3. Given
4. $\overline{QS} \cong \overline{TS}$, $\overline{PS} \cong \overline{RS}$	4. Def. of bisector
5. ∠ <i>QSP</i> ≅ ∠ <i>TSR</i>	5. Vert. ∠s Thm.
6. ∠QSP ≅ ∠TRS	6. Third ∠s Thm.
7. ∆QPS ≅ ∆TRS	7. Def. of $\cong \Delta s$

Check It Out! Example 4

Use the diagram to prove the following.

Given: \overline{MK} bisects \overline{JL} . \overline{JL} bisects \overline{MK} . $\overline{JK} \simeq \overline{ML}$. $JK \mid \mid ML.$

Prove: $\Delta JKN \simeq \Delta LMN$



Check It Out! Example 4 Continued

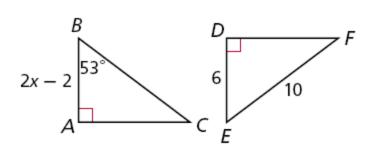
Statements	Reasons	
1. $\overline{JK} \cong \overline{ML}$	1. Given	
2. \overline{JK} \overline{ML}	2. Given	
3. ∠JKN ≅ ∠NML	3. Alt int. ∠s are ≅	
4. \overline{JL} and \overline{MK} bisect each other.	4. Given	
5. $\overline{JN} \cong \overline{LN}$, $\overline{MN} \cong \overline{KN}$	5. Def. of bisector	
6. ∠KNJ ≅ ∠MNL	6. Vert. ∠s Thm.	
7. ∠ <i>KJN</i> ≅ ∠ <i>MLN</i>	7. Third ∠s Thm.	
8. ∆ <i>JKN</i> ≅ ∆ <i>LMN</i>	8. Def. of $\cong \Delta s$	

Lesson Quiz

1. $\triangle ABC \cong \triangle JKL$ and AB = 2x + 12. JK = 4x - 50. Find *x* and *AB*. 31, 74

Given that polygon $MNOP \cong polygon QRST$, identify the congruent corresponding part.

4. Given: $\triangle ABC \simeq \triangle DEF$ Find m $\angle F$.



Lesson Quiz

Statements	Reasons	
1. ∠A ≅ ∠E	1. Given	
2. C is mdpt. of BD and AE	2. Given	
3. $\overline{AC} \cong \overline{EC}$; $\overline{BC} \cong \overline{DC}$	3. Def. of mdpt.	
4. <i>ĀB</i> ≅ <i>ĒD</i>	4. Given	
5. ∠ <i>ACB</i> ≅ ∠ <i>ECD</i>	5. Vert. ∠s Thm.	
6. ∠ <i>B</i> ≅ ∠ <i>D</i>	6. Third ∠s Thm.	
7. $\triangle ABC \cong \triangle EDC$	7. Def. of $\cong \Delta s$	

HOMEWORK

—Page 234 # 2 - 10, 13 — 19