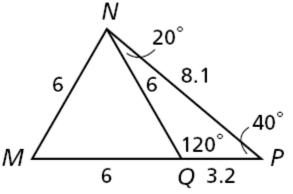
Classify each triangle by its angles <u>and</u> sides.

- **1.** \triangle *MNQ* acute; equilateral
- **2.** $\triangle NQP$ obtuse; scalene
- **3.** $\triangle MNP$ acute; scalene



4. Find the side lengths of the triangle.

$$3x + 2 \qquad 4x - 7$$

$$2x + 5$$

29; 29; 23

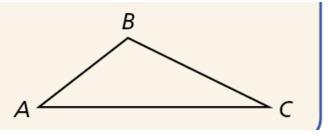
Objectives

Find the measures of interior and exterior angles of triangles.

Triangle Sum Theorem:

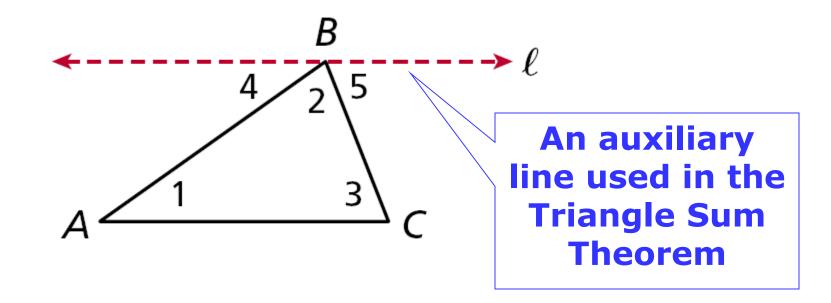
The sum of the angle measures of a triangle is 180°.

 $m \angle A + m \angle B + m \angle C = 180^{\circ}$



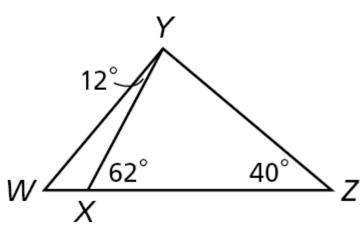
Holt Geometry

An **<u>auxiliary line</u>** is a line that is added to a figure to aid in a proof.



Example 1A: Application

After an accident, the positions of cars are measured by law enforcement to investigate the collision. Use the diagram drawn from the information collected to find m $\angle XYZ$.



 $m \angle XYZ + m \angle YZX + m \angle ZXY = 180^{\circ}$ \triangle Sum. Thm

 $m \angle XYZ + 40 + 62 = 180$

Substitute 40 for m∠YZX and 62 for m∠ZXY.

 $m \angle XYZ + 102 = 180$

Simplify.

 $m \angle XYZ = 78^{\circ}$ Subtract 102 from both sides.

Holt Geometry

Example 1B: Application

After an accident, the positions of cars are measured by law enforcement to investigate the collision. Use the diagram drawn from the information collected to find $m \angle YWZ$.

Step 1 Find $m \angle WXY$.

 $m \angle YXZ + m \angle WXY = 180^{\circ}$

 $62 + m \angle WXY = 180$

Lin. Pair Thm. and ∠ Add. Post.

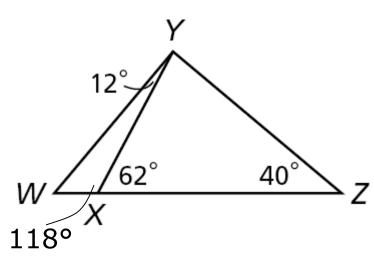
Substitute 62 for m∠YXZ.

 $m \angle WXY = 118^{\circ}$

Holt Geometry

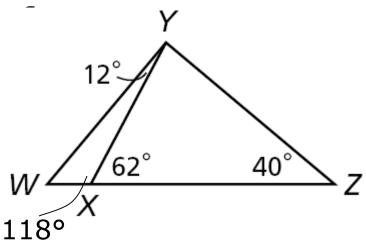
Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

Subtract 62 from both sides.



Example 1B: Application Continued

After an accident, the positions cars are measured by law enforcement to investigate the collision. Use the diagram draw from the information collected to find m $\angle YWZ$.



Step 2 Find $m \angle YWZ$.

 $m \angle YWX + m \angle WXY + m \angle XYW = 180^{\circ} \bigtriangleup Sum.$ Thm

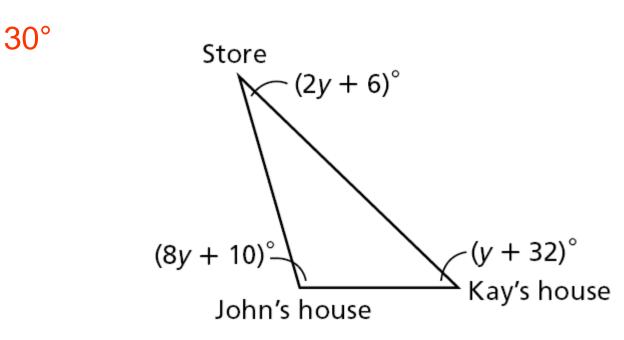
 $m \angle YWX + 118 + 12 = 180$ Substitute 118 for $m \angle WXY$ and 12 for $m \angle XYW$.

 $m \angle YWX + 130 = 180$ Simplify.

 $m \angle YWX = 50^{\circ}$ Subtract 130 from both sides.

Lesson Quiz: Part II

4. The diagram is a map showing John's house, Kay's house, and the grocery store. What is the angle the two houses make with the store?



A **<u>corollary</u>** is a theorem whose proof follows directly from another theorem. Here are two corollaries to the Triangle Sum Theorem.

COROLLARY	HYPOTHESIS	CONCLUSION
The acute angles of a right triangle are complementary.	F E	∠ D and ∠ E are complementary. m∠ D + m∠E = 90°
The measure of each angle of an equiangular triangle is 60°.	B C	m∠ A = m∠ B = m∠ C = 60°

Holt Geometry

Example 2: Finding Angle Measures in Right Triangles

One of the acute angles in a right triangle measures $2x^{\circ}$. What is the measure of the other acute angle?

Let the acute angles be $\angle A$ and $\angle B$, with m $\angle A = 2x^{\circ}$.

 $m \angle A + m \angle B = 90^{\circ}$ Acute $\angle s$ of rt. \triangle are comp.

 $2x + m \angle B = 90$ Substitute 2x for $m \angle A$.

 $m \angle B = (90 - 2x)^{\circ}$ Subtract 2x from both sides.

Check It Out! Example 2a

The measure of one of the acute angles in a right triangle is 63.7°. What is the measure of the other acute angle?

Let the acute angles be $\angle A$ and $\angle B$, with m $\angle A = 63.7^{\circ}$.

 $m \angle A + m \angle B = 90^{\circ}$ Acu

 $63.7 + m \angle B = 90$

m∠*B* = 26.3°

Acute $\angle s$ of rt. \triangle are comp.

Substitute 63.7 for $m \angle A$.

Subtract 63.7 from both sides.

Check It Out! Example 2b

The measure of one of the acute angles in a right triangle is $(4x - 5)^\circ$. What is the measure of the other acute angle?

Let the acute angles be $\angle A$ and $\angle B$, with m $\angle A = x^{\circ}$.

 $m \angle A + m \angle B = 90^{\circ}$ Acute $\angle s$ of rt. \triangle are comp.

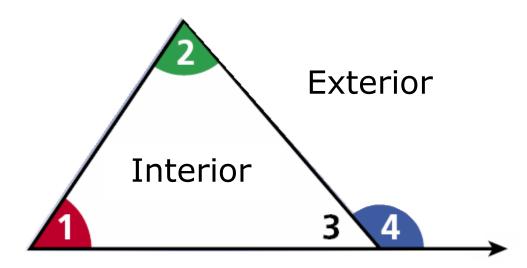
 $4x - 5 + m \angle B = 90$ Substitute x for $m \angle A$.

 $m \angle B = (95 - 4x)^{\circ}$ Subtract x from both sides.

Not Needed in Notes...

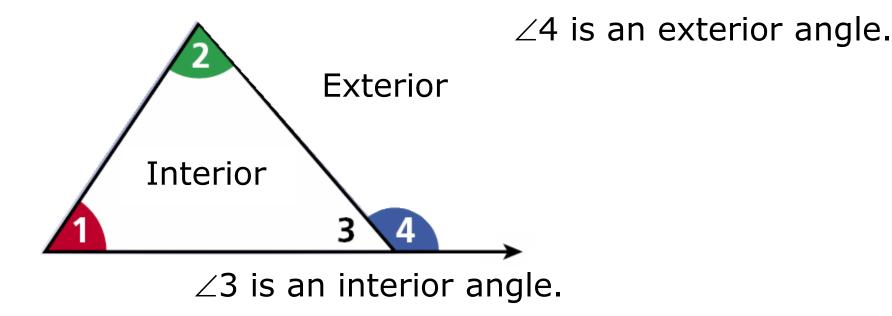
The **interior** is the set of all points inside the figure.

The **exterior** is the set of all points outside the figure.



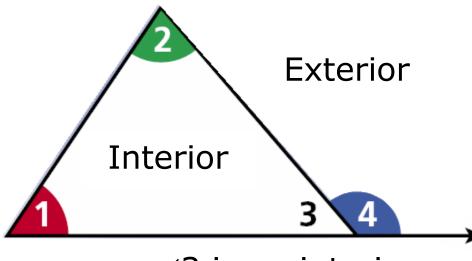
An **interior angle** is formed by two sides of a triangle.

An **<u>exterior angle</u>** is formed by one side of the triangle and extension of an adjacent side.



Holt Geometry

A **<u>remote interior angle</u>** is an interior angle that is not adjacent to the exterior angle. Each exterior angle has 2 remote interior angles.



 $\angle 4$ is an exterior angle. The remote interior angles of $\angle 4$ are $\angle 1$ and $\angle 2$.

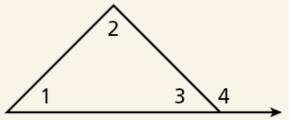
 $\angle 3$ is an interior angle.

Holt Geometry

Exterior Angle Theorem:

The measure of an exterior angle of a triangle is equal to the sum of the measures of its remote interior angles.

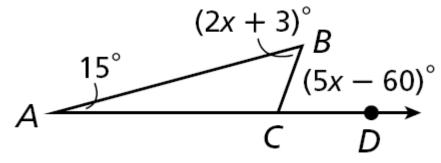
 $m \angle 4 = m \angle 1 + m \angle 2$



Holt Geometry

Example 3: Applying the Exterior Angle Theorem

Find m∠*B*.



 $m \angle A + m \angle B = m \angle BCD$

Ext. ∠ *Thm.*

15 + 2x + 3 = 5x - 60

2x + 18 = 5x - 60

78 = 3x

Substitute 15 for $m \angle A$, 2x + 3 for $m \angle B$, and 5x - 60 for $m \angle BCD$.

Simplify. Subtract 2x and add 60 to both sides.

 $26 = x \qquad Divide by 3.$

 $m \angle B = 2x + 3 = 2(26) + 3 = 55^{\circ}$

Holt Geometry

Check It Out! Example 3

Find m∠*ACD*.

 $B \qquad C \qquad D^{A} (2z + 1)^{\circ}$

 $m \angle ACD = m \angle A + m \angle B$

Ext. \angle Thm.

6z - 9 = 2z + 1 + 90

6z - 9 = 2z + 91

4z = 100

Substitute 6z – 9 for $m \angle ACD$, 2z + 1 for $m \angle A$, and 90 for $m \angle B$.

Simplify.

Subtract 2z and add 9 to both sides.

z = 25 Divide by 4.

 $m \angle ACD = 6z - 9 = 6(25) - 9 = 141^{\circ}$

Holt Geometry

HOMEWORK:

Pg. 227 #4-10, 15-20, 29-32

Holt Geometry