4-2 Angle Relationships in Triangles

Classify each triangle by its angles and sides.

1. $\triangle M N Q$ acute; equilateral
2. $\triangle N Q P$ obtuse; scalene
3. $\triangle M N P$ acute; scalene
4. Find the side lengths of the triangle.

4-2 Angle Relationships in Triangles

Objectives

Find the measures of interior and exterior angles of triangles.

4-2 Angle Relationships in Triangles

Triangle Sum Theorem:

The sum of the angle measures of a triangle is 180°.

$$
\mathrm{m} \angle A+\mathrm{m} \angle B+\mathrm{m} \angle C=180^{\circ}
$$

4-2 Angle Relationships in Triangles

An auxiliary line is a line that is added to a figure to aid in a proof.

4-2 Angle Relationships in Triangles

Example 1A: Application

After an accident, the positions of cars are measured by law enforcement to investigate the collision. Use the diagram drawn from the information collected to find $m \angle X Y Z$.

$\mathrm{m} \angle X Y Z+\mathrm{m} \angle Y Z X+\mathrm{m} \angle Z X Y=180^{\circ} \quad \triangle$ Sum. Thm
$\mathrm{m} \angle X Y Z+40+62=180$
Substitute 40 for $m \angle Y Z X$ and 62 for $m \angle Z X Y$.
$\mathrm{m} \angle X Y Z+102=180 \quad$ Simplify.
$\mathrm{m} \angle X Y Z=78^{\circ} \quad$ Subtract 102 from both sides.

4-2 Angle Relationships in Triangles

Example 1B: Application

After an accident, the positions of cars are measured by law enforcement to investigate the collision. Use the diagram drawn from the information collected to find $\mathbf{m} \angle \mathbf{Y W Z}$.

Step 1 Find $\mathrm{m} \angle W X Y$.
$\mathrm{m} \angle Y X Z+\mathrm{m} \angle W X Y=180^{\circ}$
$62+\mathrm{m} \angle W X Y=180 \quad$ Substitute 62 for $m \angle Y X Z$.

$$
\mathrm{m} \angle W X Y=118^{\circ} \quad \text { Subtract } 62 \text { from both sides. }
$$

4-2 Angle Relationships in Triangles

Example 1B: Application Continued

After an accident, the positions cars are measured by law enforcement to investigate the collision. Use the diagram draw from the information collected to find $\mathbf{m} \angle \mathbf{Y W Z}$.

Step 2 Find $\mathrm{m} \angle Y W Z$.
$\mathrm{m} \angle Y W X+\mathrm{m} \angle W X Y+\mathrm{m} \angle X Y W=180^{\circ} \triangle$ Sum. Thm

$$
\begin{array}{rll}
\mathrm{m} \angle Y W X+118+12 & =180 & \text { Substitute } 118 \text { for } m \angle W X Y \text { and } \\
12 \text { for } m \angle X Y W . \\
\mathrm{m} \angle Y W X+130 & =180 & \text { Simplify. } \\
\mathrm{m} \angle Y W X & =50^{\circ} & \text { Subtract } 130 \text { from both sides. }
\end{array}
$$

4-2 Angle Relationships in Triangles

Lesson Quiz: Part II

4. The diagram is a map showing John's house, Kay's house, and the grocery store. What is the angle the two houses make with the store?
30°

4-2 Angle Relationships in Triangles

A corollary is a theorem whose proof follows directly from another theorem. Here are two corollaries to the Triangle Sum Theorem.

COROLLARY	HYPOTHESIS	CONCLUSION
The acute angles of a right triangle are complementary.		$\angle D$ and $\angle E$ are complementary. $\mathrm{m} \angle D+\mathrm{m} \angle E=90^{\circ}$
The measure of each angle of an equiangular triangle is 60°.	B	$\mathrm{~m} \angle A=\mathrm{m} \angle B=\mathrm{m} \angle \mathrm{C}=60^{\circ}$

4-2 Angle Relationships in Triangles

Example 2: Finding Angle Measures in Right Triangles

One of the acute angles in a right triangle measures $2 x^{\circ}$. What is the measure of the other acute angle?

Let the acute angles be $\angle A$ and $\angle B$, with $\mathrm{m} \angle A=2 x^{\circ}$.

$$
\begin{aligned}
\mathrm{m} \angle A+\mathrm{m} \angle B & =90^{\circ} & & \text { Acute } \angle s \text { of } r \text { t. } \triangle \text { are comp. } \\
2 x+\mathrm{m} \angle B & =90 & & \text { Substitute } 2 x \text { for } m \angle A . \\
\mathrm{m} \angle B & =(90-2 \mathrm{x})^{\circ} & & \text { Subtract } 2 x \text { from both sides. }
\end{aligned}
$$

Angle Relationships in Triangles

Check It Out! Example 2a

The measure of one of the acute angles in a right triangle is 63.7°. What is the measure of the other acute angle?

Let the acute angles be $\angle A$ and $\angle B$, with $\mathrm{m} \angle A=63.7^{\circ}$.

$$
\begin{aligned}
\mathrm{m} \angle A+\mathrm{m} \angle B & =90^{\circ} \\
63.7+\mathrm{m} \angle B & =90 \\
\mathrm{~m} \angle B & =26.3^{\circ}
\end{aligned}
$$

Acute $\angle \mathrm{s}$ of rt . \triangle are comp.
Substitute 63.7 for $m \angle A$.
Subtract 63.7 from both sides.

Angle Relationships in Triangles

Check It Out! Example 2b

The measure of one of the acute angles in a right triangle is $(4 x-5)^{\circ}$. What is the measure of the other acute angle?
Let the acute angles be $\angle A$ and $\angle B$, with $\mathrm{m} \angle A=x^{\circ}$.

$$
\begin{array}{cl}
\mathrm{m} \angle A+\mathrm{m} \angle B=90^{\circ} & \text { Acute } \angle s \text { of rt. } \triangle \text { are comp. } \\
4 x-5+\mathrm{m} \angle B=90 & \text { Substitute } x \text { for } m \angle A . \\
\mathrm{m} \angle B=(95-4 x)^{\circ} & \text { Subtract } x \text { from both sides. }
\end{array}
$$

Angle Relationships in Triangles

Not Needed in Notes...
The interior is the set of all points inside the figure.

The exterior is the set of all points outside the figure.

Angle Relationships in Triangles

An interior angle is formed by two sides of a triangle.

An exterior angle is formed by one side of the triangle and extension of an adjacent side.

$\angle 3$ is an interior angle.

4-2 Angle Relationships in Triangles

A remote interior angle is an interior angle that is not adjacent to the exterior angle. Each exterior angle has 2 remote interior angles.

$\angle 3$ is an interior angle.

4-2 Angle Relationships in Triangles

Exterior Angle Theorem:

The measure of an exterior angle of a triangle is equal to the sum of the measures of its remote interior angles.

$$
\mathrm{m} \angle 4=\mathrm{m} \angle 1+\mathrm{m} \angle 2
$$

4-2 Angle Relationships in Triangles

Example 3: Applying the Exterior Angle Theorem

Find $\mathbf{m} \angle B$.

$$
\begin{aligned}
& \mathrm{m} \angle A+\mathrm{m} \angle B=\mathrm{m} \angle B C D \\
& 15+2 x+3=5 x-60
\end{aligned}
$$

$$
\text { Ext. } \angle T h m .
$$

Substitute 15 for $m \angle A, 2 x+3$ for $m \angle B$, and $5 x-60$ for $m \angle B C D$.

$$
\begin{aligned}
2 x+18 & =5 x-60 \\
78 & =3 x
\end{aligned}
$$

Simplify.
Subtract $2 x$ and add 60 to both sides.

$$
26=x
$$

Divide by 3.
$\mathrm{m} \angle B=2 x+3=2(26)+3=55^{\circ}$

4-2 Angle Relationships in Triangles

Check It Out! Example 3

Find $m \angle A C D$.

$$
\mathrm{m} \angle A C D=\mathrm{m} \angle A+\mathrm{m} \angle B \quad \text { Ext. } \angle \text { Thm }
$$

$$
\begin{aligned}
& 6 z-9=2 z+1+90 \\
& 6 z-9=2 z+91
\end{aligned}
$$

$$
4 z=100
$$

$$
z=25
$$

$$
\text { Divide by } 4 .
$$

$$
\mathrm{m} \angle A C D=6 z-9=6(25)-9=141^{\circ}
$$

4-2 Angle Relationships in Triangles

HOMEWORK:

Pg. 227 \#4-10, 15-20, 29-32

