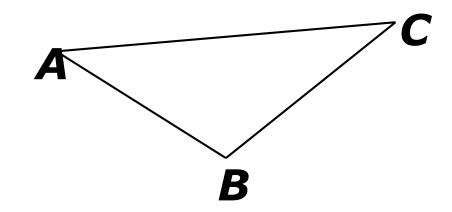

## **4-1** Classifying Triangles

#### Warm Up

Classify each angle as acute, obtuse, or right.






**Objectives** 

# Classify triangles by their angle measures and side lengths.

Use triangle classification to find angle measures and side lengths.

**Holt Geometry** 

# **4-1** Classifying Triangles



 $\overline{AB}$ ,  $\overline{BC}$ , and  $\overline{AC}$  are the sides of  $\triangle ABC$ .

A, B, C are the triangle's vertices.

# Triangles can be classified by their angle measures or by their side lengths.

**Holt Geometry** 



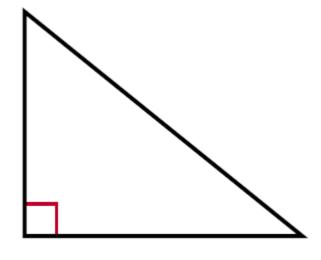






**Holt Geometry** 





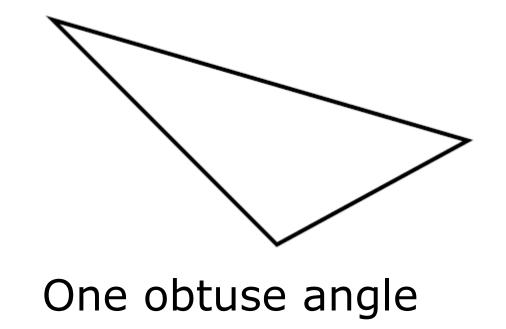

**Holt Geometry** 









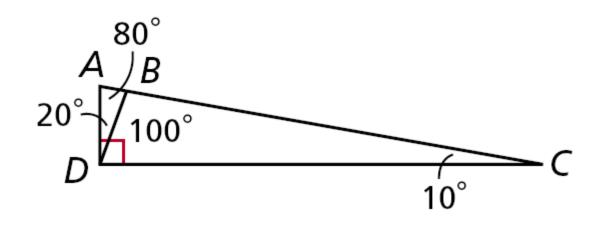

### One right angle

**Holt Geometry** 









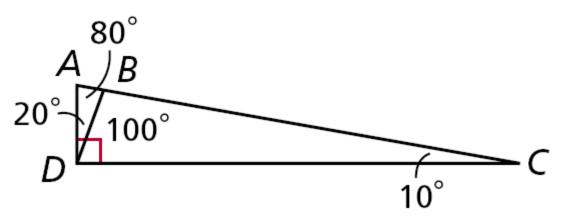

**Holt Geometry** 



#### **Example 1A: Classifying Triangles by Angle Measures**

#### Classify riangle BDC by its angle measures.




#### $\angle B$ is an obtuse angle.

 $\angle B$  is an obtuse angle. So  $\triangle BDC$  is an obtuse triangle.



#### **Example 1B: Classifying Triangles by Angle Measures**

#### Classify $\triangle ABD$ by its angle measures.



 $\angle ABD$  and  $\angle CBD$  form a linear pair, so they are supplementary.


Therefore m $\angle ABD$  + m $\angle CBD$  = 180°. By substitution, m $\angle ABD$  + 100° = 180°. So m $\angle ABD$  = 80°.  $\triangle ABD$  is an acute triangle by definition.

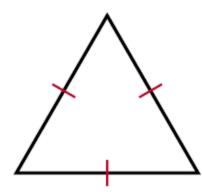
**Holt Geometry** 



#### **Check It Out! Example 1**

#### Classify riangle FHG by its angle measures.




 $\angle EHG$  is a right angle. Therefore m $\angle EHF$  +m $\angle FHG$  = 90°. By substitution, 30°+ m $\angle FHG$  = 90°. So m $\angle FHG$  = 60°.

 $\triangle$ *FHG* is an equiangular triangle by definition.



### **Triangle Classification By Side Lengths**

### **Equilateral Triangle**



### Three congruent sides

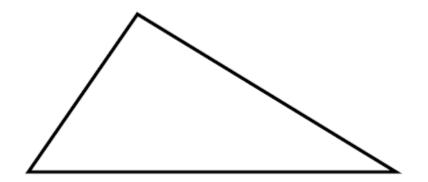
**Holt Geometry** 



### Triangle Classification By Side Lengths

### **Isosceles Triangle**




### At least two congruent sides

**Holt Geometry** 





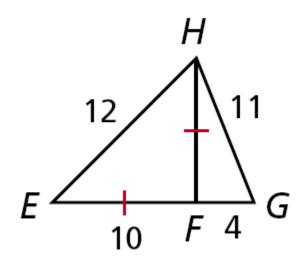
### **Scalene Triangle**



### No congruent sides

**Holt Geometry** 



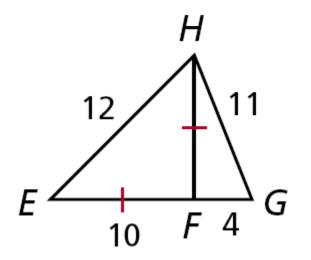

#### **Remember!**

When you look at a figure, you cannot assume segments are congruent based on appearance. They must be marked as congruent. Same goes for right angles.



#### **Example 2A: Classifying Triangles by Side Lengths**

Classify riangle *EHF* by its side lengths.

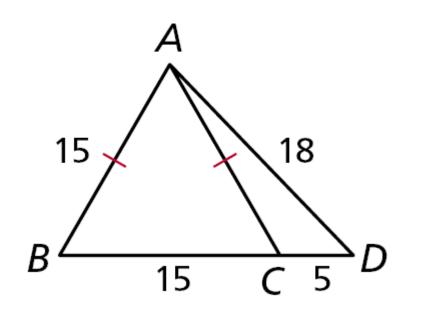



From the figure,  $\overline{EF} \cong \overline{HF}$ . So HF = 10, and  $\triangle EHF$  is isosceles.



#### **Example 2B: Classifying Triangles by Side Lengths**

#### Classify $\triangle$ *EHG* by its side lengths.




By the Segment Addition Postulate, EG = EF + FG = 10 + 4 = 14. Since no sides are congruent,  $\triangle EHG$  is scalene.



#### **Check It Out! Example 2**

#### Classify $\triangle$ ABC by its side lengths.



From the figure,  $\overline{AB} \cong \overline{AC}$ . So AC = 15, and  $\triangle ACD$  is isosceles.



#### **Example 3: Using Triangle Classification**

#### Find the side lengths of riangle JKL.

**Step 1** Find the value of *x*.

$$\overline{JK} \cong \overline{KL} \qquad Given. \qquad J \qquad 5x+2$$

$$JK = KL$$
 Def. of  $\cong$  segs.

4x - 10.7 = 2x + 6.3 Substitute (4x - 10.7) for JK and (2x + 6.3) for KL.

$$2x = 17.0$$
 Add 10.7 and subtract 2x from both sides.

x = 8.5 Divide both sides by 2.

4x - 10.7 K 2x + 6.3



#### **Example 3 Continued**

#### Find the side lengths of $\triangle$ *JKL*.

**Step 2** Substitute 8.5 into the expressions to find the side lengths.

$$JK = 4x - 10.7$$

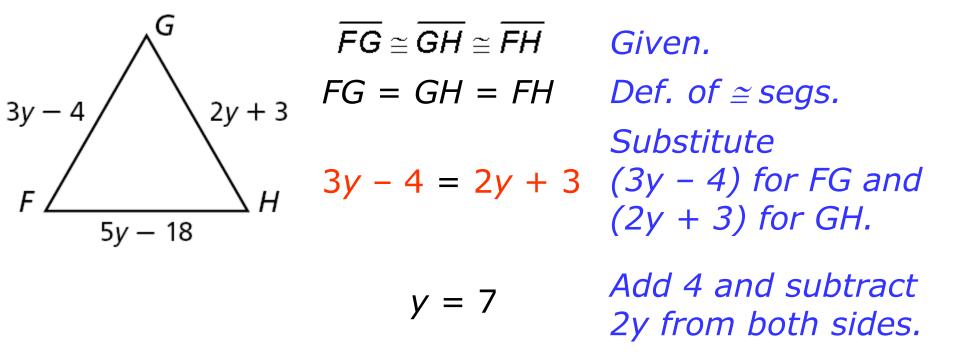
$$= 4(8.5) - 10.7 = 23.3$$

KL = 2x + 6.3

$$= 2(8.5) + 6.3 = 23.3$$

$$JL = 5x + 2$$

$$= 5(8.5) + 2 = 44.5$$

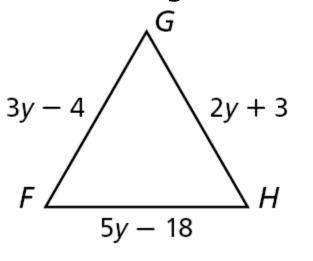

$$4x - 10.7 \quad K \quad 2x + 6.3$$
  
 $J \quad - L \quad 5x + 2$ 



#### **Check It Out! Example 3**

#### Find the side lengths of equilateral $\triangle$ *FGH*.

**Step 1** Find the value of *y*.



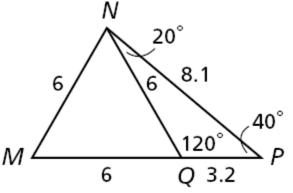



#### **Check It Out! Example 3 Continued**

#### Find the side lengths of equilateral $\triangle$ *FGH*.

**Step 2** Substitute 7 into the expressions to find the side lengths.




$$FG = 3y - 4$$
  
= 3(7) - 4 = 17  
$$GH = 2y + 3$$
  
= 2(7) + 3 = 17  
$$FH = 5y - 18$$
  
= 5(7) - 18 = 17

## **4-1** Classifying Triangles

#### **Lesson Quiz**

#### Classify each triangle by its angles and sides.

- **1.**  $\triangle$  *MNQ* acute; equilateral
- **2.**  $\triangle NQP$  obtuse; scalene
- **3.**  $\triangle MNP$  acute; scalene



**4.** Find the side lengths of the triangle.

$$3x + 2 \qquad 4x - 7$$

$$2x + 5$$

29; 29; 23



# **Homework:**

# Page 219 #1-19 odd

**Holt Geometry**