Classifying Triangles

Warm Up

Classify each angle as acute, obtuse, or right.

3.
obtuse
4. If the perimeter is 47 , find x and the lengths of the three sides.

Objectives

Classify triangles by their angle measures and side lengths.

Use triangle classification to find angle measures and side lengths.

Classifying Triangles

$\overline{A B}, \overline{B C}$, and $\overline{A C}$ are the sides of $\triangle A B C$.
A, B, C are the triangle's vertices.

Triangles can be classified by their angle measures or by their side lengths.

4-1 Classifying Triangles

Triangle Classification By Angle Measures

Acute Triangle

Three acute angles

4-1 Classifying Triangles

Triangle Classification By Angle Measures

Equiangular Triangle

Three congruent acute angles

4-1 Classifying Triangles

Triangle Classification By Angle Measures

Right Triangle

One right angle

4-1 Classifying Triangles

Triangle Classification By Angle Measures

Obtuse Triangle

One obtuse angle

Classifying Triangles

Example 1A: Classifying Triangles by Angle Measures

Classify $\triangle B D C$ by its angle measures.

$\angle B$ is an obtuse angle.
$\angle B$ is an obtuse angle. So $\triangle B D C$ is an obtuse triangle.

4-1 Classifying Triangles

Example 1B: Classifying Triangles by Angle Measures

Classify $\triangle A B D$ by its angle measures.

$\angle A B D$ and $\angle C B D$ form a linear pair, so they are supplementary.

Therefore $\mathrm{m} \angle A B D+\mathrm{m} \angle C B D=180^{\circ}$. By substitution, $\mathrm{m} \angle A B D+100^{\circ}=180^{\circ}$. So $\mathrm{m} \angle A B D=80^{\circ} . \triangle A B D$ is an acute triangle by definition.

4-1 Classifying Triangles

Check It Out! Example 1

Classify $\triangle \boldsymbol{F H G}$ by its angle measures.

$\angle E H G$ is a right angle. Therefore $\mathrm{m} \angle E H F+\mathrm{m} \angle F H G=90^{\circ}$. By substitution, $30^{\circ}+\mathrm{m} \angle F H G=90^{\circ}$. So $\mathrm{m} \angle F H G=60^{\circ}$.
$\triangle F H G$ is an equiangular triangle by definition.

4-1 Classifying Triangles

Triangle Classification By Side Lengths

Equilateral Triangle

Three congruent sides

4-1 Classifying Triangles

Triangle Classification By Side Lengths

Isosceles Triangle

At least two congruent sides

4-1 Classifying Triangles

Triangle Classification By Side Lengths

Scalene Triangle

No congruent sides

Classifying Triangles

Remember!

When you look at a figure, you cannot assume segments are congruent based on appearance. They must be marked as congruent. Same goes for right angles.

Classifying Triangles

Example 2A: Classifying Triangles by Side Lengths

Classify $\triangle E H F$ by its side lengths.

From the figure, $\overline{E F} \cong \overline{H F}$. So $H F=10$, and $\triangle E H F$ is isosceles.

Classifying Triangles

Example 2B: Classifying Triangles by Side Lengths

Classify $\triangle E H G$ by its side lengths.

By the Segment Addition Postulate, $E G=E F+F G=$ $10+4=14$. Since no sides are congruent, $\triangle E H G$ is scalene.

(4-1 Classifying Triangles

Check It Out! Example 2

Classify $\triangle A B C$ by its side lengths.

From the figure, $\overline{A B} \cong \overline{A C}$. So $A C=15$, and $\triangle A C D$ is isosceles.

4-1 Classifying Triangles

Example 3: Using Triangle Classification

Find the side lengths of $\triangle J K L$.
Step 1 Find the value of x.

$$
\begin{array}{rlrl}
\overline{J K} \cong \overline{K L} & & \text { Given. } & 5 x+2 \\
J K & =K L & & \text { Def. of } \cong \text { segs. } \\
4 x-10.7 & =2 x+6.3 & & \text { Substitute }(4 x-10.7) \text { for } \\
& & \text { JK and }(2 x+6.3) \text { for } K L . \\
2 x & =17.0 & & \text { Add } 10.7 \text { and subtract } 2 x \\
x & =8.5 & & \text { from both sides. } \\
\text { Divide both sides by } 2 .
\end{array}
$$

Classifying Triangles

Example 3 Continued

Find the side lengths of $\triangle J K L$.
Step 2 Substitute 8.5 into the expressions to find the side lengths.

$J K=4 x-10.7$

$$
=4(8.5)-10.7=23.3
$$

$$
K L=2 x+6.3
$$

$$
=2(8.5)+6.3=23.3
$$

$$
J L=5 x+2
$$

$$
=5(8.5)+2=44.5
$$

4-1 Classifying Triangles

Check It Out! Example 3

Find the side lengths of equilateral $\triangle F G H$.

Step 1 Find the value of y.

$$
\begin{array}{cl}
\overline{F G} \cong \overline{G H} \cong \overline{F H} & \text { Given. } \\
F G=G H=F H & \text { Def. of } \cong \text { segs. } \\
3 y-4=2 y+3 & \text { Substitute } \\
y=7 & (3 y-4) \text { for } F G \text { and } \\
(2 y+3) \text { for } G H .
\end{array}
$$

Classifying Triangles

Check It Out! Example 3 Continued

Find the side lengths of equilateral $\triangle \boldsymbol{F G H}$.

Step 2 Substitute 7 into the expressions to find the side lengths.

$$
\begin{aligned}
F G & =3 y-4 \\
& =3(7)-4=17 \\
G H & =2 y+3 \\
& =2(7)+3=17 \\
F H & =5 y-18 \\
& =5(7)-18=17
\end{aligned}
$$

Classifying Triangles

Lesson Quiz

Classify each triangle by its angles and sides.

1. $\triangle M N Q$ acute; equilateral
2. $\triangle N Q P$ obtuse; scalene
3. $\triangle M N P$ acute; scalene
4. Find the side lengths of the triangle.

(4-1 Classifying Triangles

Homework:

Page 219 \#1-19 odd

