BELLWORK

In slope-intercept form, write the equation of the line that contains the points in the table.

X	-8	-4	4	8
y	-5	-3.5	-0.5	1

First, find the slope. Let (x_1, y_1) be (-8, -5) and (x_2, y_2) be (8, 1).

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1 - (-5)}{8 - (-8)} = \frac{6}{16} = \frac{3}{8}$$

Next, choose a point, and use either form of the equation of a line.

Example 3 Continued

Method A Point-Slope Form Using (8, 1):

Rewrite in slope-intercept form.

 $y - y_1 = m(x - x_1)$

 $y - (1) = \frac{3}{8}(x)$ $y - 1 = \frac{3}{8}(x)$

$$y - 1 = \frac{3}{8}x - 3$$
 Distribute.
-8) Substitute.
$$y = \frac{3}{8}x - 2$$
 Solve for y.

Write the equation that represents the situation in the table.

Selling Price (\$)	Rent (\$)	
75	9	
90	12	
160	26	
250	44	

X – selling price Y – rent

Holt Geometry

Graph lines and write equations given a graph.

Write the equation of each line in slope-intercept form.

- 1) Find y intercept and slope
- 2) Plug these numbers into y = mx + b

Example 2A: Graphing Lines

Graph each line.

 $y=\frac{1}{2}x+1$

The equation is given in the slope-intercept form, with a slope of $\frac{1}{2}$ and a *y*-intercept of 1. Plot the point (0, 1) and then rise 1 and run 2 to find another point. Draw the line containing the points.

Example 2B: Graphing Lines

Graph each line.

y = -2x - 5

The equation is given in the point-slope form, with a slope of $\frac{-2}{1}$ through the point (-4, 3). Plot the point (-4, 3) and then rise -2 and run 1 to find another point. Draw the line containing the points.

Check It Out! Example 2a

Graph each line.

y=2x-3

The equation is given in the slope-intercept form, with a slope of $\frac{2}{1}$ and a *y*-intercept of -3. Plot the point (0, -3) and then rise 2 and run 1 to find another point. Draw the line containing the points.

Check It Out! Example 2b

Graph each line.

y = (-2/3)x - 1

The equation is given in the point-slope form, with a slope of $\frac{-2}{3}$ through the point (-2, 1). Plot the point (-2, 1)and then rise -2 and run 3 to find another point. Draw the line containing the points.

Horizontal Lines

Vertical Lines

Holt Geometry

Example 2C: Graphing Lines

Graph each line.

y = -3

The equation is given in the form of a horizontal line with a y-intercept of -3.

The equation tells you that the y-coordinate of every point on the line is -3. Draw the horizontal line through (0, -3).

Check It Out! Example 2c

Graph each line.

y = -4

The equation is given in the form of a horizontal line with a y-intercept of -4.

The equation tells you that the y-coordinate of every point on the line is -4. Draw the horizontal line through (0, -4).

WORKSHEET 3.6B

Holt Geometry