3-5 Slopes of Lines

Find the value of x.

Holt Geometry

Holt Geometry

Objectives

Find the slope of a line.

Holt Geometry

<u>Slope</u> - describes the steepness of the line. Can use any two points on the line to find slope.

3-5 Slopes of Lines

Slope =
$$\frac{rise}{run}$$
 Graph

Slope Formula: Label two points

$$(x_1, y_1)$$
 and (x_2, y_2)

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Holt Geometry

Example 1A: Finding the Slope of a Line

Use the slope formula to determine the slope of each line.

AB

Substitute (-2, 7) for (x_1, y_1) and (3, 7) for (x_2, y_2) in the slope formula and then simplify.

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - 7}{3 - (-2)} = \frac{0}{5} = 0$$

Example 1B: Finding the Slope of a Line

Use the slope formula to determine the slope of each line.

ĂĊ

Substitute (-2, 7) for (x_1, y_1) and (4, 2) for (x_2, y_2) in the slope formula and then simplify.

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 7}{4 - (-2)} = \frac{-5}{6} = -\frac{5}{6}$$

Example 1C: Finding the Slope of a Line

Use the slope formula to determine the slope of each line.

AD

Substitute (-2, 7) for (x_1, y_1) and (-2, 1) for (x_2, y_2) in the slope formula and then simplify.

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1 - 7}{2 - (-2)} = \frac{-6}{0}$$

e slone is undefined

The slope is undefined.

You cannot divide by zero:

If 0 is under the line, the slope is undefined.

Example 1D: Finding the Slope of a Line

Use the slope formula to determine the slope of each line.

CD

Substitute (4, 2) for (x_1, y_1) and (-2, 1) for (x_2, y_2) in the slope formula and then simplify.

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1 - 2}{-2 - 4} = \frac{-1}{-6} = \frac{1}{6}$$

One interpretation of slope is a *rate of change*. If y represents miles traveled and x represents time in hours, the slope gives the rate of change in miles per hour.

Example 2: Transportation Application

Justin is driving from home to his college dormitory. At 4:00 p.m., he is 260 miles from home. At 7:00 p.m., he is 455 miles from home. Graph the line that represents Justin's distance from home at a given time. Find and interpret the slope of the line.

Use the points (4, 260) and (7, 455) to graph the line and find the slope.

$$m = \frac{455 - 260}{7 - 4} = \frac{195}{3} = 65$$

Holt Geometry

Homework:

WS 3.5 – Finding Slope

Holt Geometry