3-5 Slopes of Lines

Find the value of x.
1.

3-5 Slopes of Lines

Warm Up Find the value of \boldsymbol{m}.

$$
\begin{array}{ll}
\text { 1. } m=\frac{7-5}{8-3} & \text { 2. } m=\frac{(-3)-6}{5-(-1)} \\
\frac{2}{5} & -\frac{3}{2} \\
\begin{array}{ll}
\text { 3. } m=\frac{4-(-4)}{2-2} & \text { 4. } m=\frac{-3+3}{1-6} \\
\text { undefined } & 0
\end{array}
\end{array}
$$

3-5 Slopes of Lines

Objectives

Find the slope of a line.

Slope - describes the steepness of the line. Can use any two points on the line to find slope.

3-5 Slopes of Lines

Graph

slope $=\frac{\text { rise }}{\text { run }}$

Slope Formula: Label two points

$$
\left(x_{1}, y_{1}\right) \quad \text { and } \quad\left(x_{2}, y_{2}\right)
$$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

3-5 Slopes of Lines

Example 1A: Finding the Slope of a Line

Use the slope formula to determine the slope of each line.
$\overleftrightarrow{\boldsymbol{A B}}$
Substitute ($-2,7$) for $\left(x_{1}, y_{1}\right)$ and $(3,7)$ for $\left(x_{2}, y_{2}\right)$ in the slope formula and then simplify.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{7-7}{3-(-2)}=\frac{0}{5}=0
$$

3-5 Slopes of Lines

Example 1B: Finding the Slope of a Line

Use the slope formula to determine the slope of each line.

$\overleftrightarrow{A C}$

Substitute $(-2,7)$ for $\left(x_{1}, y_{1}\right)$ and $(4,2)$ for $\left(x_{2}, y_{2}\right)$ in the slope formula and then simplify.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-7}{4-(-2)}=\frac{-5}{6}=-\frac{5}{6}
$$

3-5 Slopes of Lines

Example 1C: Finding the Slope of a Line

Use the slope formula to determine the slope of each line.

$\overleftrightarrow{A D}$

Substitute ($-2,7$) for $\left(x_{1}, y_{1}\right)$ and $(-2,1)$ for $\left(x_{2}, y_{2}\right)$ in the slope formula and then simplify.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{1-7}{2-(-2)}=\frac{-6}{0}
$$

The slope is undefined.

3-5 Slopes of Lines

You cannot divide by zero:
If 0 is under the line, the slope is undefined.

3-5 Slopes of Lines

Example 1D: Finding the Slope of a Line

Use the slope formula to determine the slope of each line.
$\stackrel{\bullet}{\boldsymbol{C}}$
Substitute (4, 2) for $\left(x_{1}, y_{1}\right)$ and $(-2,1)$ for $\left(x_{2}, y_{2}\right)$ in the slope formula and then simplify.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{1-2}{-2-4}=\frac{-1}{-6}=\frac{1}{6}
$$

3-5 Slopes of Lines

Summary: Slope of a Line

Positive Slope	Negative Slope	Zero Slope	Undefined Slope

One interpretation of slope is a rate of change. If y represents miles traveled and x represents time in hours, the slope gives the rate of change in miles per hour.

3-5 Slopes of Lines

Example 2: Transportation Application

Justin is driving from home to his college dormitory. At 4:00 p.m., he is 260 miles from home. At 7:00 p.m., he is 455 miles from home. Graph the line that represents Justin's distance from home at a given time. Find and interpret the slope of the line.

Use the points $(4,260)$ and $(7,455)$ to graph the line and find the slope.

$$
m=\frac{455-260}{7-4}=\frac{195}{3}=65
$$

3-5 Slopes of Lines

Homework:

WS 3.5 - Finding Slope

