3-3 Proving Lines Parallel

Bellwork

(PROF. CHECK TODAY!!!)

Name the postulate or theorem that proves $p \| r$.

1. $\angle 4 \cong \angle 5 \quad$ Conv. of Alt. Int. $\angle \mathrm{s}$ Thm.
2. $\angle 2 \cong \angle 7 \quad$ Conv. of Alt. Ext. $\angle \mathrm{s}$ Thm.
3. $\angle 3 \cong \angle 7 \quad$ Conv. of Corr. $\angle \mathrm{s}$ Post.
4. $\angle 3$ and $\angle 5$ are supplementary.

Conv. of Same-Side Int. $\angle \mathrm{s}$ Thm.

3-3 Proving Lines Parallel

Find all missing angle measures.

3-3 Proving Lines Parallel

Example 3: Proving Lines Parallel

Given: $p \| r, \angle 1 \cong \angle 3$
Prove: $\ell \| m$

3-3 Proving Lines Parallel

Example 3 Continued

Statements	Reasons	
1. $p \\| r$	1. Given	
2. $\angle 3 \cong \angle 2$	2. Alt. Ext. $\angle \mathrm{s}$ Thm.	
3. $\angle 1 \cong \angle 3$	3. Given	
4. $\angle 1 \cong \angle 2$	4. Trans. Prop. of \cong	
5. $\ell \\| m$	5. Conv. of Corr. $\angle \mathrm{s}$ Post.	

3-3 Proving Lines Parallel

Check It Out! Example 3

Given: $\angle 1 \cong \angle 4, \angle 3$ and $\angle 4$ are supplementary. Prove: $\ell|\mid m$

3-3 Proving Lines Parallel

Check It Out! Example 3 Continued

Statements	Reasons	
1. $\angle 1 \cong \angle 4$	1. Given	
2. $\mathrm{m} \angle 1=\mathrm{m} \angle 4$	2. Def. $\cong \angle \mathrm{s}$	
3. $\angle 3$ and $\angle 4$ are supp.	3. Given	
4. $\mathrm{m} \angle 3+\mathrm{m} \angle 4=180^{\circ}$	4. Trans. Prop. of \cong	
5. $\mathrm{m} \angle 3+\mathrm{m} \angle 1=180^{\circ}$	5. Substitution	
6. $\mathrm{m} \angle 2=\mathrm{m} \angle 3$	6. Vert. $\angle \mathrm{s}$ Thm.	
7. $\mathrm{m} \angle 2+\mathrm{m} \angle 1=180^{\circ}$	7. Substitution	
8. $\ell \\| m$	8. Conv. of Same-Side Interior $\angle s$ Post.	

3-3 Proving Lines Parallel

Example 4: Carpentry Application

A carpenter is creating a woodwork pattern and wants two long pieces to be parallel. $\mathrm{m} \angle 1=(8 x+20)^{\circ}$ and $\mathrm{m} \angle 2=(2 x+10)^{\circ}$. Find the value of x that shows Piece A and Piece B are parallel.

Piece A Piece B

3-3 Proving Lines Parallel

Example 4 Continued

A line through the center of the horizontal piece forms a transversal to pieces A and B.
$\angle 1$ and $\angle 2$ are same-side interior angles. If $\angle 1$ and $\angle 2$ are supplementary, then pieces A and B are parallel.

Substitute 15 for x in each expression.

3-3 Proving Lines Parallel

Example 4 Continued

$$
\begin{aligned}
\mathrm{m} \angle 1 & =8 x+20 & & \\
& =8(15)+20=140 & & \text { Substitute } 15 \text { for } x . \\
\mathrm{m} \angle 2 & =2 x+10 & & \\
& =2(15)+10=40 & & \text { Substitute } 15 \text { for } x . \\
\mathrm{m} \angle 1 & +\mathrm{m} \angle 2=140+40 & & \angle 1 \text { and } \angle 2 \text { are } \\
& =180 & & \text { supplementary. }
\end{aligned}
$$

The same-side interior angles are supplementary, so pieces A and B are parallel by the Converse of the Same-Side Interior Angles Theorem.

No Homework Tonight

