Bellwork (PROF. CHECK TODAY!!!)

Name the postulate or theorem that proves *p* || *r*.

- **1.** $\angle 4 \cong \angle 5$ Conv. of Alt. Int. $\angle s$ Thm.
- **2.** $\angle 2 \cong \angle 7$ Conv. of Alt. Ext. $\angle s$ Thm.
- **3.** $\angle 3 \cong \angle 7$ Conv. of Corr. $\angle s$ Post.
- **4.** \angle 3 and \angle 5 are supplementary.

Conv. of Same-Side Int. \angle s Thm.

Find all missing angle measures.

Holt Geometry

Example 3: Proving Lines Parallel

Given: *p* || *r* , ∠1 ≅ ∠3 **Prove:** ℓ || *m*

Example 3 Continued

Statements	Reasons
1. p r	1. Given
2. ∠3 ≅ ∠2	2. Alt. Ext. ∠s Thm.
3. ∠1 ≅ ∠3	3. Given
4. ∠1 ≃ ∠2	4. Trans. Prop. of \cong
5. l m	5. Conv. of Corr. \angle s Post.

Check It Out! Example 3

Given: $\angle 1 \cong \angle 4$, $\angle 3$ and $\angle 4$ are supplementary. **Prove:** || m

Check It Out! Example 3 Continued

Statements	Reasons
1. ∠1 ≅ ∠4	1. Given
2. m∠1 = m∠4	2. Def. ≅ ∠s
3. $\angle 3$ and $\angle 4$ are supp.	3. Given
4. m∠3 + m∠4 = 180°	4. Trans. Prop. of \cong
5. m∠3 + m∠1 = 180°	5. Substitution
6. m∠2 = m∠3	6. Vert.∠s Thm.
7. m∠2 + m∠1 = 180°	7. Substitution
8. { <i>m</i>	8. Conv. of Same-Side Interior ∠s Post.

Example 4: Carpentry Application

A carpenter is creating a woodwork pattern and wants two long pieces to be parallel. $m \ge 1 = (8x + 20)^\circ$ and $m \ge 2 = (2x + 10)^\circ$. Find the value of x that shows Piece A and Piece B are parallel.

Example 4 Continued

A line through the center of the horizontal piece forms a transversal to pieces A and B.

 $\angle 1$ and $\angle 2$ are same-side interior angles. If $\angle 1$ and $\angle 2$ are supplementary, then pieces A and B are parallel.

Substitute 15 for x in each expression.

Example 4 Continued

$m \angle 1 = 8x + 20$	
= 8 <mark>(15)</mark> + 20 = 140	Substitute 15 for x.
$m \angle 2 = 2x + 10$	
= 2 <mark>(15)</mark> + 10 = 40	Substitute 15 for x.
m∠1+m∠2 = 140 + 40	∠1 and ∠2 are
= 180	supplementary.

The same-side interior angles are supplementary, so pieces A and B are parallel by the Converse of the Same-Side Interior Angles Theorem.

No Homework Tonight

Holt Geometry