Compass and "Straight Edge"
 Constructions with some proofs.

Constructions

To Construct the Perpendicular Bisector of a line.

1. Place compass at A, set over halfway and draw 2 arcs.
2. Place compass at B, with same distance set and draw 2 arcs to intersect first two.
3. Draw the perpendicular bisector through the points of intersection.

Constructions

To Construct the Angle Bisector of a given angle.

1. Place compass at A, and draw an arc crossing $A B$ and $A C$.
2. Place compass at intersections and (with the same distance set) draw 2 arcs that intersect.

3. Draw the angle bisector from A through the point of intersection.

Constructions

To Construct an Equilateral Triangle.

1. Draw base line $A B$ of any length.
2. Place compass at A, set to distance $A B$ and draw arc.
3. Place compass at B, with same distance set, draw an arc to intersect first one.
4. Join intersection point to A and B to form an equilateral triangle.

To Show that triangle $A B C$ is Equilateral

Can you explain from the previous construction why triangle $A B C$ is equilateral?

Constructions

To Construct a Regular Hexagon.

1. Draw a circle of any radius.
2. With compass fixed at 1 radius place anywhere on the circumference and mark off 6 arcs.
3. Join intersections of arcs together to form a regular hexagon.

Constructions

To Construct an angle of 60°.

1. Draw base line $A B$ of any length.
2. Place compass at A, set to distance $A B$ and draw arc.
3. Place compass at B , with same distance set and draw an arc to intersect first one.
4. Draw straight line from A through point of intersection. Angle $B A C=60^{\circ}$.

Constructions

To Construct an angle of 30°.

1. Draw base line $A B$ of any length.
2. Construct an angle of 60° at A.
3. Bisect angle BAC.
4. Angle BAD $=30^{\circ}$

Constructions

To draw a perpendicular to a given point on a line.

1. Place compass at P and with distance PA set, draw arc at C.
2. With compass at A and distance set greater than AP, draw arc above line AB.
3. Repeat with compass at C and same distance set.
4. Draw line through intersection of arcs to P. This line is perpendicular to P.

Constructions

To Construct an angle of 45° at any point P on a straight line.

1. Draw base line $A B$ of any length.
2. Mark a point P anywhere on $A B$.
3. Construct the perpendicular to P.
4. Bisect angle BPD.
5. Angle $\mathrm{BPE}=45^{\circ}$.

Constructions

To Construct the Circumscribed Circle of a given triangle.

The perpendicular bisectors of the sides of ariangle are co-incident at the circumcentre.

Bisect any two sides of the triangle to find the circumcentre (In this case AB and $B C)$. Place compass at circumcentre and draw circumcircle through each vertex.

Constructions

To Construct the Inscribed Circle for any given triangle.
The angle bisectors of a triangle are co-incident at the Incentre.

Find the incentre by taking the angle bisector of any two angles. (CAB and BCA in this case). Place compass at incentre and draw circle inside triangle.

Constructions

To Construct a line through a given point P, parallel to a given line.

1. Mark off any 2 points on line AB.
2. With centre P and radius $C D$ draw an arc adjacent to P.
3. With centre D and radius PC draw an arc to intersect the first one.
4. The line through P and the point of intersection is parallel to $A B$.

Constructions

To construct the perpendicular to a given line from a given point, not on the line.

1. With centre P, draw an arc of a circle that intersects $A B$ at 2 points.
2. With centre C and compass set over $1 / 2$ distance $C D$ draw arc below $A B$.
3. With centre D and same distance set, draw an arc to intersect the previous one.
4. The line through P and the intersecting arcs is perpendicular to $A B$.

Constructions

To divide a straight line into any number of parts. (Example is into 5 parts)

1. Draw line $A C$ at any angle to $A B$.
2. Use compass to mark off 5 equal line segments of any length along AC.
3. Join point of intersection on last arc to point B.
4. Draw other lines from points of intersection on $A C$ parallel to $C B$ to meet $A B$.
5. AB is now divided into 5 equal parts.

To Prove that CD bisects $A B$ at M.

Arcs lay on the circumference of circles of equal radii.
$A C=A D=B C=B D$ (radii of the same circle).
Triangles $A C D$ and $B C D$ are congruent with $C D$ common to both (SSS).
So Angle $A C D=B C D$.
Triangles $C A M$ and $C B M$ are congruent (SAS). Therefore $A M=B M$. QED

To Prove that $A G$ is the Angle Bisector of CAB

$A D=A E$ (radii of the same circle).
$D G=E G$ (radii of the same circle).
Triangle ADG is congruent to AEG (AG common to both) SSS.
So angle EAG = DAG.
Therefore $A G$ is the angle bisector of $C A B$. QED

Constructions

To prove that DEP is perpendicular to $A B$ at P.

1. $A P=P C$ by construction.
2. $A E=C E$ equal radii.
3. Triangles AEP and CEP are congruent (SSS) with EP common to both.
4. So angle $\mathrm{APE}=$ angle $\mathrm{CPE}=90^{\circ}$ (Angles on a line sum to 180°) therefore line DEP is perpendicular to $A B$ at P. QED.

$$
\begin{gathered}
\text { Compass and } \\
\text { ruler/protractor } \\
\text { constructions of } \\
\text { triangles. }
\end{gathered}
$$

Constructions

To Construct a triangle, given 3 sides.

Example 1: To construct a triangle of sides $8 \mathrm{~cm}, 7 \mathrm{~cm}$ and 6 cm .

1. Draw line 8 cm long and use as base of triangle.
2. Set compass to 7 cm , place at A and draw an arc.
3. Set compass to 6 cm , place at B and draw an arc to intersect the first one.
4. Draw straight lines from A and B to point of intersection.

Constructions

To Construct a triangle, given 3 sides.

Example 2: To construct a triangle of sides $7 \mathrm{~cm}, 9 \mathrm{~cm}$ and 4 cm .

1. Using the longest side as the base, draw a straight line 9 cm long.
2. Set compass to 7 cm , place at A and draw an arc.
3. Set compass to 4 cm , place at B and draw an arc to intersect the first one.
4. Draw straight lines from A and B to point of intersection.

Constructions

To Construct a triangle, given 3 sides.

Example 3: To construct a triangle of sides $7 \mathrm{~cm}, 3^{1 / 2} \mathrm{~cm}$ and 10 cm .

1. Using the longest side as the base, draw a straight line 10 cm long.
2. Set compass to 7 cm , place at A and draw an arc.
3. Set compass to $31 / 2 \mathrm{~cm}$, place at B and draw an arc to intersect the first one.
4. Draw straight lines from A and B to point of intersection.

The table below shows lengths of sides for constructing a triangle. Which ones cannot form a triangle?

	Side 1	Side 2	Side 3
1	12 cm	8 cm	7 cm
2	9 cm	12 cm	4 cm
30	8 cm	15 cm	7 cm
4	18 cm	3 cm	20 cm
$\bigcirc 5$	8 cm	8 cm	17 cm
6	19 cm	7 cm	13 cm
,	9.3 cm	18 cm	7.2 cm
3	50 cm	26 cm	23 cm
≥ 0	40 cm	41 cm	82 cm
10	99 cm	2 cm	100 cm

Constructions

To construct a triangle, given 1 side and 2 angles.
Example 1: To construct a triangle of side, 9 cm with angles of 35° and 65°.

1. Draw a straight line 9 cm long.
2. Use a protractor to draw angles of 35° and 65° on either end of line.
3. Draw straight lines from A and B to point of intersection to form the triangle.

Constructions

To construct a triangle, given 1 side and 2 angles.
Example 1: To construct a triangle of side, 9 cm with angles of 35° and 65°.

1. Draw a straight line 9 cm long.
2. Use a protractor to draw angles of 35° and 65° on either end of line.
3. Draw straight lines from A and B to point of intersection to form the triangle.

Constructions

To construct a triangle, given 1 side and 2 angles.
Example 2: To construct a triangle of side, 8 cm with angles of 30° and 100°.

1. Draw a straight line 8 cm long.
2. Use a protractor to draw angles of 30° and 100° on either end of line.
3. Draw straight lines from A and B to point of intersection to form the triangle.

Constructions

To construct a triangle, given 1 side and 2 angles.
Example 2: To construct a triangle of side, 8 cm with angles of 30° and 100°.

1. Draw a straight line 8 cm long.
2. Use a protractor to draw angles of 30° and 100° on either end of line.
3. Draw straight lines from A and B to point of intersection to form the triangle.

Constructions

To construct a triangle, given 2 sides and an angle.
Example 1: To construct a triangle of sides, 9 cm and 7 cm with an angle of 40°.

1. Draw a straight line 9 cm long.
2. Use a protractor to draw an angle of 40° on either end of line.
3. Mark off a length of 7 cm .

Constructions

To construct a triangle, given 2 sides and an angle.
Example 1: To construct a triangle of sides, 9 cm and 7 cm with an angle of 40°.

1. Draw a straight line 9 cm long.
2. Use a protractor to draw an angle of 40° on either end of line.
3. Mark off a length of 7 cm .
4. Join end points to form the required triangle.

Constructions

To construct a triangle, given 2 sides and an angle.
Example 2: To construct a triangle of sides, 10 cm and 7 cm with an angle of 115°.

1. Draw a straight line 10 cm long.
2. Use a protractor to draw an angle of 115° on either end of line.
3. Mark off a length of 7 cm .

Constructions

To construct a triangle, given 2 sides and an angle.
Example 2: To construct a triangle of sides, 10 cm and 7 cm with an angle of 115°.

1. Draw a straight line 10 cm long.
2. Use a protractor to draw an angle of 115° on either end of line.
3. Mark off a length of 7 cm .

Constructions

The Ambiguous Case

In the previous constructions using SSS, SAS and ASA, all constructed triangles are congruent to each other. This is not the case when you are given SSA (that is, two sides and an angle that is not included). This situation can give rise to more than one solution.

Consider the situation for a triangle with sides $9 \mathrm{~cm}, 5 \mathrm{~cm}$ and an angle of 30°

Constructions

The Ambiguous Case

In the previous constructions using SSS, SAS and ASA, all constructed triangles are congruent to each other. This is not the case when you are given SSA (that is, two sides and an angle that is not included). This situation can give rise to more than one solution.

Consider the situation for a triangle with sides $9 \mathrm{~cm}, 5 \mathrm{~cm}$ and an angle of 30°

Arc of circle of radius 5 cm centred on B.

